Category Archives: Conventional Medicine

Lectures From Around The World

Galina MIgalko MSc, MD, NMD and Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner
Galina MIgalko MSc, MD, NMD and Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner 

Come listen and learn from Key Note Speakers, Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner and Galina Migalko MSc, MD, NMD, in four different countries around the World as they lecture on non-invasive medical diagnostics, the interstitium, pH, nutrition and their break-through research on prevention and non-invasive treatments for cancer, diabetes, heart disease, arthritis, osteoporosis, lupus, multiple sclerosis, infections, and many more acidic-caused diseases.

To pre-register for one or more World Conferences please email phmiraclelife@gmail.com and receive an additional 10 to 20 percent discount on the listed early-bird pricing. You can also register by phone by calling 760 484 1075.

When you enroll in one of our Conferences you will receive a credit for a live and dried blood cell analysis, valued at 1200 euros.

Please check out the Countries, Cities, Dates and Pricing below!

From Terminal Cancer to Courage and a Self-Cure

Inger Hartelius with her Daughter Tea Hartelius
Inger Hartelius with her daughter Tea Hartelius
In 2011, I had the unique pleasure of meeting Inger Hartelius at the Rancho del Sol/pH Miracle Center in Valley Center, California, and had the chance to follow her journey from diagnosis to recovery from terminal cancer to courage to her self-cure. It is an honor for me to pass along her story and personal journey. We all have a choice, a personal choice in terms of health, wellness, energy and fitness. Please take the time and read Inger’s enriching and empowering story that I believe will make you wiser and possibly change your life or even save your life –  If not your life maybe the life of a friend or a loved one!

This is how I regained my future from terminal metastatic lung cancer:

By Inger Hartelius,

This article was initially published in the magazine ”Tidslerne”, (Danish Cancer Association Tidslerne) in January 2018.

 

I was diagnosed with pulmonary adenocarcinoma lung cancer in one of my lungs and lymph nodes near the esophagus in July, 2011. I chose to say NO to chemo and NO to radiation and today – six and a half years later after a life threatening terminal diagnosis. Today, I have no evidence of cancer in anywhere in my body.

In a small dark office, without windows, at the Pulmonary Department in Roskilde Hospital, my husband and I were informed that on the basis of tests from a PET-CT scanning, they had found lung adenocarcinoma, stage 2, R7 og 4L, T1bN3MO, a diagnosis so severe that the doctors in an interdisciplinary conference had booked me for chemotherapy and radiation at Herlev Hospital already the following week.

As written in my medical record, I was “appropriately in tears”, while saying no thank you to the offer and later also to an orientation on the treatment possibilities, side effects and potential consequences of the hospitals offer. An offer which, according to the doctor, could prolong life – not cure. And, it was a matter of a short extension of lifespan, which was also confirmed by the statistical evidence I asked for. Potentially it was a matter of just a few months.

Six and a half years without any signs or symptoms of cancer

Even before I got the final diagnosis, I wasn’t considering chemotherapy or radiation. Between the scan and the results I researched into alternative treatments.

Today I have no evidence and no symptoms of metastatic lung cancer. A CAT scanning in April, 2016 confirmed my belief of being cured of terminal metastatic pulmonary adenocarcinoma lung cancer. (No one has ever been cured of metastatic pulmonary adenocarcinoma lung cancer)  In many ways I feel better than before I was diagnosed. I am 64 years old – and I believe that I have many more healthy years ahead of me.

Did they give the correct diagnosis? The doctor who gave me the results of the scan in April, 2016 asked himself this out loud while reading my medical journal. Am I just one of the lucky ones who indescribably doesn’t follow the statistics (approx. 1 year lifespan post diagnosis and with treatment), or is what I chose to do instead of chemo and radiation the reason why I am still alive, health and cancer free? Who knows?

Extreme bravery to say yes to chemotherapy

Though it is difficult to know for sure why I have survived cancer it is important for me to tell the world that some of us actually survive cancer without the conventional treatments and also therefore avoid the medical side effects, one of which is death – and gaining many positive results, which we choose instead.

Many have asked me: How did you dare? This question actually surprises me because this wasn’t how I was thinking. Many tell me they think I am brave.

Before the diagnosis I thought that the people who chose the conventional treatments were extremely brave. How can they let their bodies be filled with chemo with all its horrible side effects, which often result in injuries both inside and outside the body, including death? To entirely trust the doctor’s hasty decisions on standardized cancer treatment programes, without being able to see what is happening and take control over one’s own life.

“Put your life in the hands of your doctor”

If I only had a few months to live I definitely didn’t want to spend it in a hospital. On top of that I had first hand experience seeing how chemotherapy didn’t only treat, but resulted in days and weeks of deathly side effects – potentially lasting the rest of life – sometimes with death as a consequence; maybe the treatments would also shorten my lifespan.

I couldn’t do it, as a calming nurse suggested after a consultation with the doctor: “Put your life in the hands of your doctor”. I would rather not!

I am very thankful for the nurse saying this to me. It was at a moment where I was consumed by the confusion of the diagnosis and thoughts of never getting to experience having grandkids, that something inside me became connected. I got myself together, dried my eyes, stood up straight and took my final decision. Either I would die from cancer or I would find another way to be cured!

A long, conventional treatment program wasn’t something I, nor my family, would let myself go through, instead I would look for other possibilities. I left the hospital in shock, but with a decision to go to an alternative way of treating my cancer.

”Tidslerne” (Danish Cancer Association) took time to listen

Already, when I was told I needed to have a biopsy taken from the area in my lungs and the swollen lymph nodes, I got in touch with a volunteer at the Cancer Association ”Tidslerne”. I had Googled the risks of taking the biopsy, and was aware that there was a 25% risk that the cancer would spread afterwards.

No-one at the hospital had informed me of this. That is why I needed to talk to others. Simultaneously, the conversations strengthened me in my belief of following my gut feeling and pursuing alternative treatment methods for my cancer. Many others had done this before me with great results.

Starting to find a solution

I read the book: Andreas Moritz: “Cancer is not a disease. It is a survival mechanism”. Some other possibilities were META-medicine, healing and Dr. Robert Young [i], who is known for having a highly effective approach to treating cancer. (over 80% success with terminal metastatic cancer and over 90% success with Stage 1, 2 and 3 cancers)

In Denmark I found advice and guidance by Dr. Claus Hancke, MD in Lyngby, who suggested high dose of Vitamin C intravenously as well as supplements of vitamins and minerals. I also consulted Frede Damgaard’s clinic of complementary treatment in Aarhus. Their key focus is on nutritional guidance supplemented with natural medicine/herbs, vitamins and minerals. His recommendations were built on extensive analysis of my body’s resources and weaknesses.

With my family in California 

Descriptions of Dr. Robert Young’s live and dry blood tests combined with focus on the body’s resources and regulation of the body’s pH-levels is what spoke to me. I wrote an email to him and was later encouraged to call him. In the following conversation with one of Dr. Young’s assistants, I was encouraged to bring my husband and kids with me and come to California. I was lucky. There was a house available for us if we could come within a couple of days. They believed that with the serious diagnosis I had, I would have a greater chance of survival if i invested in a retreat at Dr. Young’s pH Miracle Center, in Valley Center, California.

 

It was a miracle: Being with my husband, kids and my son’s girlfriend was fantastic. Being in an avocado and grapefruit plantation in California and living in a house feeling like I was in the middle of a great dream during my life’s biggest nightmare. While we were there I asked myself many times: Am I dreaming?

Because a couple of days ago I was getting my head around the concept that I was going to die. Instead I was now in paradise, being inspired to change my mindset of why people get cancer. At the same time we were informed daily on how to live according to Dr. Young’s recommendations, to prevent cancer and get rid of it by building up the body’s resources, so that it will not accumulate cancer cells.

Live and dried blood tests

 

Dr. Young’s blood tests showed that I should not fear dying from that cancer which the doctors had discovered in my body. I had many resources I could activate and through a whole body cleanse I could rid my body of this cancerous condition.

The blood test took place in a large teaching room where there was plenty of space for all five of us and one of Dr. Young’s assistants. We were surrounded by posters and other interesting teaching materials. A small prick in the finger was enough to make a live blood test, and the seven drops of blood dried on a glass plate. I sat by Dr. Young and his computer and followed along. The others saw the tests on the wall. He placed the blood from my finger on the glass plates and placed them under a microscope connected to a computer and a projector.

It was fantastic getting to see the tests instantly with my own eyes. There was no waiting time and Dr. Young let me in on how he interpreted the tests. It was personal and caring; “Try to see the many regular round blood cells floating freely around each other surrounded by clear liquid. The more of these there are and the clearer the liquid, the better the blood’s ability is to clean and transport oxygen to your body. The liquid between the cells shows no sign that the current cancer is a serious threat to your body. Here some of the cells are aggregating, which is a sign of dehydration. And the shape of the cells here shows that you need more nutritional oils.”

 

In the dries blood tests Dr. Young was focused on the patterns in which the blood coagulated. Experience shows that patterns can tell a lot about a person’s health and current challenges and resources. In my tests it was clear that I had to focus on my immune system and my digestion. On top of that there was a sign that I had had a lot of heavy metals in my blood – maybe because of the long period in my life where I ate a lot of fish.

Alkaline plan against terminal cancer 

Along with the blood tests I tested the pH levels of my saliva and my urine every morning and night. There was space for improvement. The pH levels of my saliva and urine were between 5 and 6. It should in both cases be a minimum of 7.4, a little higher than the pH levels of the blood.

From the blood tests and the pH levels Dr. Young made a protocol, which I followed, telling me which special supplements I should take with my alkaline meals[ii] as well as which activities I should carry out.

First and foremost I had to drink approximately 4 liters of liquid every day as well as a glass of salt water every morning and night. The liquid should consist of juice from vegetables and water with high pH levels, preferably with freeze dried vegetable powder and liquid chlorophyll. [iii]. I also had to stay physically active on a daily basis and partake in various therapeutic treatments.

 

It was very in depth and I have to admit it was a little hard to grasp it all. Luckily my son was good at helping me stay on top of it all so I could go in depth with it all one step at a time.

After the blood test we moved our focus from the cancer in my body to building up healthier and a more well functioning body. An exciting journey into the pH Miracle lifestyle. We focused on how we could keep our blood alive and healthy while strengthening the body’s ability to maintain a high pH level. It was all about what we eat. what we drink, what we breath, what we think, as well as how we challenged ourselves both physically and mentally.

Screen Shot 2018-03-11 at 8.31.02 AM

The days were full of exciting activities: Younga Yoga in the morning followed by Dr. Young’s workshop, breakfast with delicious avocado-smoothies, juice from vegetables and almond milk, food demonstrations, time in an infrared sauna, salt baths and activities on the center’s many training machines as well as hiking and running trips in the area.

A life affirming place

In Dr. Young’s plan there was a therapeutic colonic hydrotherapy with 20 liters of liquid consisting of water with high pH-levels, powder of freeze dried alkaline vegetables, salt and chlorophyll. I got a minimum of one hour’s massage focused on activating my lymphatic system.

At home we started preparing alkaline food and I started training to run 5 kilometers. In the beginning it was just a small run where I live. I was exhausted. Later it was longer trips along the beach.

To make it easier to prepare the food we invested in an effective blender and a juicer. We also got an infrared sauna, a bathtub (for salt baths), a rebounder (to jump on), a colonic board (to frequently clean my colon with 20 liters of water) as well as a pH Miracle water ionizing machine. The cleansing ionized water played an especially big role in the change I could see in the pH levels of my saliva and urine – both in the morning and the evening. The pH levels rose steadily and landed somewhere between 9 and 10 in the urine and 7 and 8 in my saliva. The values are still at this level.

 

I had consultations with Dr. Pernille Knudtzon, MD, a psychologist and reflexologist. Dr. John Arnved, MD at the Lung- and Allergy clinic in Copenhagen followed me and tested my lungs frequently as well as my allergy reaction to mold. My own doctor followed my progress with blood tests to keep an eye on the mineral and vitamin levels in my body.

I was busy and sometimes completely overwhelmed with all the changes in my body and the doubt: Was it the right thing, I had started? Why was I still losing weight? Would I be cured? Just think… I didn’t trust my body completely; maybe the cancer was growing despite my hard work to get rid of it. The support of family, friends and the people whom I contacted for help was very important to me.

Frequent follow up meetings

After three months I had two medical thermography scans with a month’s time between each. The results were quite shocking. The American doctors analysed the pictures and recommended that I start conventional treatment as the pictures showed that the cancer may have spread.

I decided to go to Spain to see Dr. Pernille Knudtzon, MD, who would supplement what I could do myself to be cured, with a week of intensive cleansing and building up of the body and soul. The experiences of the week with Pernille Knudtzon gave me new tools to tackle my thoughts and feelings so they weren’t in the way of my work on getting healthy. After a week in Spain with my sister I returned home with renewed courage. [ii]

In April, 2012 Dr. Young had a retreat in Como, Italy (pH Miracle protocol is now available at Forte Village, Sardegna, Italy) where I had the chance to regain inspiration and support to intensify my healing process. My husband and daughter went with me and we had a fantastic week. My blood tests again showed a big improvement, so Dr. Young recommended that I continue my process to take care of myself and my health.

In September of the same year Dr. Young invited me to another retreat in Como, Italy to give me another chance to be thermographically scanned and get an ultrasound by his partner, Dr. Galina Migalko (MD, NMD, RDMS).[iii] Neither test methods are harmful to the body. The tests showed, to everyone’s pleasure, that I had built up my immune system. It was now a year since I received the diagnosis and none of the tests showed any trace of cancer in my body. I had no symptoms either and had more energy and was starting to gain weight again.

28951932_2026221690978074_2590423586761634031_n.jpg

”10 Steps to Perfect Health 2012”

When I came home, I decided that I wanted to share my journey. I needed to share my experiences with others to confirm to myself that it was a success. It could motivate me to continue living an alkaline lifestyle as taught by Dr. Young.

 

To stand in front of a large group of people and talk about how the lifestyle I had chosen had played a role in me being healthy, compelled me to continue. I knew now that ensuring the daily maintenance of my health was the best way for me to prevent the cancer from returning to my body. See the YouTube video: ”10 Steps to Perfect Health 2012”, a film about the workshop I had at the National Museum in Copenhagen with Paulo Fernandes, one of Dr. Young’s students.

In the summer of 2012 my son and sister took part in a course in California where Dr. Young was teaching his experiences and theories behind his way of analyzing living and dried blood tests. They both brought a microscope with them home so that they could connect to their laptops. I could now sit with them and see my own blood. They got very good at analyzing it, which gave us all the possibility to frequently keep an eye on how our bodies reacted to different challenges and changes in our lives.

All that fear for no reason!

When I saw my blood tests after an appendicitis which ended in a burst appendix, it was clear that I now had to invest in my cleansing activities. In this period I started coughing, losing weight and sweating again. The fear of the intensive operation meant that again there would be cancer in my lungs. Cancer with renewed power. I felt weak and powerless.

The family was again there to help me get back on track. My blood tests showed progression. An ultrasound scan at the Scanning clinic in Herlev showed that my inner organs were healthy and in good shape. At the same time the test that I had done at the Allergy and Lung clinic in Copenhagen showed that my lungs were not seriously affected by the cough. Dr. John Arnved, MD, dared to say that such positive results wouldn’t be there if the cancer was growing in my lungs again. So he encouraged me to start up my runs by the beach again so I could cough up what was irritating my lungs. Fantastic advice – I ran again for my life and coughed a lot by the beach for a couple of days. After a week’s time I discovered that I wasn’t coughing anymore! Wow! All this fear for no reason.

The fear of dying died down

As previously said I renounced contact with the hospital. I knew from what I had read that it was very hard for the body to be scanned. I was also very aware of the psychological challenges. Both the experience of being in the scanner, the waiting time between the scan and the results as well as the thick atmosphere I experienced with the results coming in. It is not easy to have hope for life in such a universe. In the big picture though I managed with help from all those who believed in my decision. The time periods in the beginning where I had mistrust and ideas about how it would be to die from lung cancer died out, so in 2016 I built up the courage to be CT scanned. I wanted to know if such a test also confirmed that I was cured from metastatic pulmonary adenocarcinoma lung cancer..

CT-scan 5 years later

The CT scan in 2016 showed that the area which was compressed in my lung was still the same size, and there were also no more swollen lymph nodes. According to the doctors there were scars from the original cancer in the lung.

There was also a little compression of 8 millimeters further down the lungs. They wanted to follow the little spot, so I had some more tests done a couple of months later. The next test showed that there was still no change, not even in the small 8mm compression.

After this I again said no thank you to the hospital’s offer for further investigations. When the compression hadn’t changed in over five years and there were no signs of enlarged lymph nodes or signs of cancer in any other parts of my body, I didn’t wish to provoke my body with more physically and psychologically stressful investigations.

My doctor, Thomas Børresen, MD, wrote this, which I look at when I am in doubt:

“The patient sought help from Dr. Robert Young, Valley Center, CA, who started a program, which didn’t only give complete remission but continuous remission of the patients cancer, which is remarkable and unique and can only be related  to the program. Normal expected survival rate with conventional medical treatment and radiation is 0%.”

I no longer have life threatening metastatic cancer in my body – and I now also have documentation from conventional sources saying it was the right thing to do to follow Dr. Young’s pH Miracle Protocol.

Alkaline as healing and a lifestyle

I still want to continue living an alkaline lifestyle, not because I need to, but because I experience that it is life affirming on many levels. It gives me a special energy and courage, which I in no way wish to lose.

It is fantastic and strengthens my belief that I still have many more healthy years ahead of me. I get a lot of time to be there for those whom I love and those I can share an active work life with. I also have the belief that there will be many years, where I can be the grandmother of my grandchildren when they come one day.

I have regained my future and will enjoy every day of it.

Inger Hartelius

References

[1] Robert Oldham Young CPT, MSc, DSc, PhD, ND, is a naturopathic practitioner and not a medical doctor. The titles after his name represent different doctoral graduations he has obtained in the USA where he has, among other things, studied nutrition, hematology, microbiology and chemistry. As a practitioner he has worked as an American Naturopath. He is also the author of 75 books published in 29 different languages, 20 peer-reviewed published articles, over 3000 blog published articles and hundreds of youtube videos concerning alkaline nutrition, lifestyle, detoxification, human pH research and chemistry of the blood and interstitium. www.drrobertyoung.comhttps://www.youtube.com/user/pHMiracleCenter, https://www.amazon.com/Robert-O.-Young/e/B001ILKCSU/ref=sr_tc_2_0?qid=1526157267&sr=8-2-ent

 

He is now practicing in Marbella, Spain and Sardegna, Italy, and produces delicious, organic, alkaline products in Italy and the USA: www.iJuicenow.comwww.phoreveryoung.comwww.phmiraclestore.comwww.alkalinecare.com, and www.phmlife.com.

You can contact Dr. Young at the following email addresses: phmiraclelife@gmail.com and universalmedicalimaging@yahoo.com

Meals containing food which produce as little acid as possible and as much alkaline as possible in the body when they are digested.

Chlorophyll is the green pigment found in plants. It can be extracted from green plants and algae. It contains magnesium and antioxidants. The material in its basic structure is similar to the molecules of our blood. It can help increase the production of red blood cells, cleanse the body from poison and waste products hence raising our energy levels. www,ijuicenow.com

[ii] Pernille Knudtzon is one of Europe’s most groundbreaking doctors. She is a traveller in the field of health and says: “Health is a choice – you can make a difference”. Residing in Spain, she hosts consultations, lectures, workshops and retreats – helping thousands of people overcome serious illnesses – also in Denmark. Read more on http://www.vitafakta.es. At Pernille Knudtzon’s clinic you can, among other things get support to cleanse and rebuild your body on several levels. You can receive live and dried blood tests, medical thermographic scans and deep insight into yourself and your healing potentials.

IMG_1709.png

[iii] Galina Migalko MD, MND, RDMS, is a medical doctor with a speciality in non-invasive medical imaging, diagnostics and naturopathic medicine. http://www.universalmedicalimaging.com and universalmedicalimaging@yahoo.com

Harvard Trained Immunologist Demolishes California Legislation That Terminates Vaccine Exemptions

78764-babyandvaccines

The following open letter by a PhD Immunologist completely demolishes the current California legislative initiative to remove all vaccine exemptions. That such a draconian and cynical state statute is under consideration in the ‘Golden State’ is as shocking as it is predictable.  After all, it was mysteriously written and submitted shortly after the manufactured-in-Disneyland measles ‘outbreak’.

The indisputable science that is employed by Tetyana Obukhanych, PhD ought to be read by every CA legislator who is entertaining an affirmative vote for SB277.  Dr. Obukhanych skillfully deconstructs the many false and fabricated arguments that are advanced by Big Pharma and the U.S Federal Government as they attempt to implement a nationwide Super-Vaccination agenda.

When the California Senate refuses to consider authoritative scientific evidence which categorically proves the dangerous vaccine side effects on the schoolchildren, something is very wrong. Such conduct by the Senate constitutes criminal action that endangers the lives and welfare of children. Their official behavior must be acknowledged for what it is — CRIMINAL — and prosecuted to the fullest extent of the law.

An Open Letter to Legislators Currently Considering Vaccine Legislation from Tetyana Obukhanych, PhD in Immunology

Re:  VACCINE LEGISLATION

Dear Legislator:

My name is Tetyana Obukhanych. I hold a PhD in Immunology.  I am writing this letter in the hope that it will correct several common misperceptions about vaccines in order to help you formulate a fair and balanced understanding that is supported by accepted vaccine theory and new scientific findings.

Do unvaccinated children pose a higher threat to the public than the vaccinated?

It is often stated that those who choose not to vaccinate their children for reasons of conscience endanger the rest of the public, and this is the rationale behind most of the legislation to end vaccine exemptions currently being considered by federal and state legislators country-wide. You should be aware that the nature of protection afforded by many modern vaccines – and that includes most of the vaccines recommended by the CDC for children – is not consistent with such a statement. I have outlined below the recommended vaccines that cannot prevent transmission of disease either because they are not designed to prevent the transmission of infection (rather, they are intended to prevent disease symptoms), or because they are for non-communicable diseases. People who have not received the vaccines mentioned below pose no higher threat to the general public than those who have, implying that discrimination against non-immunized children in a public school setting may not be warranted.

  1. IPV (inactivated poliovirus vaccine) cannot prevent transmission of poliovirus (see appendix for the scientific study, Item #1). Wild poliovirus has been non-existent in the USA for at least two decades. Even if wild poliovirus were to be re-imported by travel, vaccinating for polio with IPV cannot affect the safety of public spaces.  Please note that wild poliovirus eradication is attributed to the use of a different vaccine, OPV or oral poliovirus vaccine. Despite being capable of preventing wild poliovirus transmission, use of OPV was phased out long ago in the USA and replaced with IPV due to safety concerns.
  1. Tetanus is not a contagious disease, but rather acquired from deep-puncture wounds contaminated with C. tetani spores. Vaccinating for tetanus (via the DTaP combination vaccine) cannot alter the safety of public spaces; it is intended to render personal protection only.
  1. While intended to prevent the disease-causing effects of the diphtheria toxin, the diphtheria toxoid vaccine (also contained in the DTaP vaccine) is not designed to prevent colonization and transmission of C. diphtheriae. Vaccinating for diphtheria cannot alter the safety of public spaces; it is likewise intended for personal protection only.
  1. The acellular pertussis (aP) vaccine (the final element of the DTaP combined vaccine), now in use in the USA, replaced the whole cell pertussis vaccine in the late 1990s, which was followed by an unprecedented resurgence of whooping cough. An experiment with deliberate pertussis infection in primates revealed that the aP vaccine is not capable of preventing colonization and transmission of B. pertussis (see appendix for the scientific study, Item #2). The FDA has issued a warning regarding this crucial finding.[1]
  • Furthermore, the 2013 meeting of the Board of Scientific Counselors at the CDC revealed additional alarming data that pertussis variants (PRN-negative strains) currently circulating in the USA acquired a selective advantage to infect those who are up-to-date for their DTaP boosters (see appendix for the CDC document, Item #3), meaning that people who are up-to-date are more likely to be infected, and thus contagious, than people who are not vaccinated.
  1. Among numerous types of H. influenzae, the Hib vaccine covers only type b. Despite its sole intention to reduce symptomatic and asymptomatic (disease-less) Hib carriage, the introduction of the Hib vaccine has inadvertently shifted strain dominance towards other types of H. influenzae (types a through f).These types have been causing invasive disease of high severity and increasing incidence in adults in the era of Hib vaccination of children (see appendix for the scientific study, Item #4).  The general population is more vulnerable to the invasive disease now than it was prior to the start of the Hib vaccination campaign.  Discriminating against children who are not vaccinated for Hib does not make any scientific sense in the era of non-type b H. influenzae disease.
  1. Hepatitis B is a blood-borne virus. It does not spread in a community setting, especially among children who are unlikely to engage in high-risk behaviors, such as needle sharing or sex. Vaccinating children for hepatitis B cannot significantly alter the safety of public spaces. Further, school admission is not prohibited for children who are chronic hepatitis B carriers. To prohibit school admission for those who are simply unvaccinated – and do not even carry hepatitis B – would constitute unreasonable and illogical discrimination.

In summary, a person who is not vaccinated with IPV, DTaP, HepB, and Hib vaccines due to reasons of conscience poses no extra danger to the public than a person who is.  No discrimination is warranted.

How often do serious vaccine adverse events happen?

It is often stated that vaccination rarely leads to serious adverse events. Unfortunately, this statement is not supported by science. A recent study done in Ontario, Canada, established that vaccination actually leads to an emergency room visit for 1 in 168 children following their 12-month vaccination appointment and for 1 in 730 children following their 18-month vaccination appointment (see appendix for a scientific study, Item #5).

When the risk of an adverse event requiring an ER visit after well-baby vaccinations is demonstrably so high, vaccination must remain a choice for parents, who may understandably be unwilling to assume this immediate risk in order to protect their children from diseases that are generally considered mild or that their children may never be exposed to.

Can discrimination against families who oppose vaccines for reasons of conscience prevent future disease outbreaks of communicable viral diseases, such as measles?

Measles research scientists have for a long time been aware of the “measles paradox.” I quote from the article by Poland & Jacobson (1994) “Failure to Reach the Goal of Measles Elimination: Apparent Paradox of Measles Infections in Immunized Persons.” Arch Intern Med 154:1815-1820:

“The apparent paradox is that as measles immunization rates rise to high levels in a population, measles becomes a disease of immunized persons.”[2]

Further research determined that behind the “measles paradox” is a fraction of the population called LOW VACCINE RESPONDERS. Low-responders are those who respond poorly to the first dose of the measles vaccine. These individuals then mount a weak immune response to subsequent RE-vaccination and quickly return to the pool of “susceptibles’’ within 2-5 years, despite being fully vaccinated.[3]

Re-vaccination cannot correct low-responsiveness: it appears to be an immuno-genetic trait.[4]  The proportion of low-responders among children was estimated to be 4.7% in the USA.[5]

Studies of measles outbreaks in Quebec, Canada, and China attest that outbreaks of measles still happen, even when vaccination compliance is in the highest bracket (95-97% or even 99%, see appendix for scientific studies, Items #6&7). This is because even in high vaccine responders, vaccine-induced antibodies wane over time.  Vaccine immunity does not equal life-long immunity acquired after natural exposure.

It has been documented that vaccinated persons who develop breakthrough measles are contagious. In fact, two major measles outbreaks in 2011 (in Quebec, Canada, and in New York, NY) were re-imported by previously vaccinated individuals.[6] – [7]

Taken together, these data make it apparent that elimination of vaccine exemptions, currently only utilized by a small percentage of families anyway, will neither solve the problem of disease resurgence nor prevent re-importation and outbreaks of previously eliminated diseases. 

Is discrimination against conscientious vaccine objectors the only practical solution?

The majority of measles cases in recent US outbreaks (including the recent Disneyland outbreak) are adults and very young babies, whereas in the pre-vaccination era, measles occurred mainly between the ages 1 and 15. Natural exposure to measles was followed by lifelong immunity from re-infection, whereas vaccine immunity wanes over time, leaving adults unprotected by their childhood shots. Measles is more dangerous for infants and for adults than for school-aged children.

Despite high chances of exposure in the pre-vaccination era, measles practically never happened in babies much younger than one year of age due to the robust maternal immunity transfer mechanism. The vulnerability of very young babies to measles today is the direct outcome of the prolonged mass vaccination campaign of the past, during which their mothers, themselves vaccinated in their childhood, were not able to experience measles naturally at a safe school age and establish the lifelong immunity that would also be transferred to their babies and protect them from measles for the first year of life.

Luckily, a therapeutic backup exists to mimic now-eroded maternal immunity. Infants as well as other vulnerable or immunocompromised individuals, are eligible to receive immunoglobulin, a potentially life-saving measure that supplies antibodies directed against the virus to prevent or ameliorate disease upon exposure (see appendix, Item #8).

In summary: 1) due to the properties of modern vaccines, non-vaccinated individuals pose no greater risk of transmission of polio, diphtheria, pertussis, and numerous non-type b H. influenzae strains than vaccinated individuals do, non-vaccinated individuals pose virtually no danger of transmission of hepatitis B in a school setting, and tetanus is not transmissible at all; 2) there is a significantly elevated risk of emergency room visits after childhood vaccination appointments attesting that vaccination is  not risk-free; 3) outbreaks of measles cannot be entirely prevented even if we had nearly perfect vaccination compliance; and 4) an effective method of preventing measles and other viral diseases in vaccine-ineligible infants and the immunocompromised, immunoglobulin, is available for those who may be exposed to these diseases. 

Taken together, these four facts make it clear that discrimination in a public school setting against children who are not vaccinated for reasons of conscience is completely unwarranted as the vaccine status of conscientious objectors poses no undue public health risk. 

Sincerely Yours,

Tetyana Obukhanych, PhD

Tetyana Obukhanych, PhD, is the author of the book Vaccine Illusion.  She has studied immunology in some of the world’s most prestigious medical institutions. She earned her PhD in Immunology at the Rockefeller University in New York and did postdoctoral training at Harvard Medical School, Boston, MA and Stanford University in California.

Dr. Obukhanych offers online classes for those who want to gain deeper understanding of how the immune system works and whether the immunologic benefits of vaccines are worth the risks:  Natural Immunity Fundamentals.

Appendix

Item #1. The Cuba IPV Study collaborative group. (2007) Randomized controlled trial of inactivated poliovirus vaccine in CubaN Engl J Med 356:1536-44

http://www.ncbi.nlm.nih.gov/pubmed/17429085

The table below from the Cuban IPV study documents that 91% of children receiving no IPV (control group B) were colonized with live attenuated poliovirus upon deliberate experimental inoculation.  Children who were vaccinated with IPV (groups A and C) were similarly colonized at the rate of 94-97%.  High counts of live virus were recovered from the stool of children in all groups.  These results make it clear that IPV cannot be relied upon for the control of polioviruses.

polio chart

Item #2. Warfel et al. (2014) Acellular pertussis vaccines protect against disease but fail to prevent infection and transmission in a nonhuman primate model.Proc Natl Acad Sci USA 111:787-92

http://www.ncbi.nlm.nih.gov/pubmed/24277828

“Baboons vaccinated with aP were protected from severe pertussis-associated symptoms but not from colonization, did not clear the infection faster than naïve [unvaccinated] animals, and readily transmitted B. pertussis to unvaccinated contacts. By comparison, previously infected [naturally-immune] animals were not colonized upon secondary infection.”

Item #3. Meeting of the Board of Scientific Counselors, Office of Infectious Diseases, Centers for Disease Control and Prevention, Tom Harkins Global Communication Center, Atlanta, Georgia, December 11-12, 2013

http://www.cdc.gov/maso/facm/pdfs/BSCOID/2013121112_BSCOID_Minutes.pdf

Resurgence of Pertussis (p.6)

“Findings indicated that 85% of the isolates [from six Enhanced Pertussis Surveillance Sites and from epidemics in Washington and Vermont in 2012] were PRN-deficient and vaccinated patients had significantly higher odds than unvaccinated patients of being infected with PRN-deficient strains.  Moreover, when patients with up-to-date DTaP vaccinations were compared to unvaccinated patients, the odds of being infected with PRN-deficient strains increased, suggesting that PRN-bacteria may have a selective advantage in infecting DTaP-vaccinated persons.”

Item #4. Rubach et al. (2011) Increasing incidence of invasive Haemophilus influenzaedisease in adults, Utah, USA. Emerg Infect Dis 17:1645-50

http://www.ncbi.nlm.nih.gov/pubmed/21888789

The chart below from Rubach et al. shows the number of invasive cases of H. influenzae(all types) in Utah in the decade of childhood vaccination for Hib.

Hib chart

Item #5. Wilson et al. (2011) Adverse events following 12 and 18 month vaccinations: a population-based, self-controlled case series analysis. PLoS One 6:e27897

http://www.ncbi.nlm.nih.gov/pubmed/22174753

“Four to 12 days post 12 month vaccination, children had a 1.33 (1.29-1.38) increased relative incidence of the combined endpoint compared to the control period, or at least one event during the risk interval for every 168 children vaccinated.  Ten to 12 days post 18 month vaccination, the relative incidence was 1.25 (95%, 1.17-1.33) which represented at least one excess event for every 730 children vaccinated.  The primary reason for increased events was statistically significant elevations in emergency room visits following all vaccinations.”

Item #6. De Serres et al. (2013) Largest measles epidemic in North America in a decade–Quebec, Canada, 2011: contribution of susceptibility, serendipity, and superspreading events. J Infect Dis 207:990-98

http://www.ncbi.nlm.nih.gov/pubmed/23264672

“The largest measles epidemic in North America in the last decade occurred in 2011 in Quebec, Canada.”

“A super-spreading event triggered by 1 importation resulted in sustained transmission and 678 cases.”

“The index case patient was a 30-39-year old adult, after returning to Canada from the Caribbean.  The index case patient received measles vaccine in childhood.”

“Provincial [Quebec] vaccine coverage surveys conducted in 2006, 2008, and 2010 consistently showed that by 24 months of age, approximately 96% of children had received 1 dose and approximately 85% had received 2 doses of measles vaccine, increasing to 97% and 90%, respectively, by 28 months of age.  With additional first and second doses administered between 28 and 59 months of age, population measles vaccine coverage is even higher by school entry.”

“Among adolescents, 22% [of measles cases] had received 2 vaccine doses.  Outbreak investigation showed this proportion to have been an underestimate; active case finding identified 130% more cases among 2-dose recipients.”

Item #7. Wang et al. (2014) Difficulties in eliminating measles and controlling rubella and mumps: a cross-sectional study of a first measles and rubella vaccination and a second measles, mumps, and rubella vaccination. PLoS One9:e89361

http://www.ncbi.nlm.nih.gov/pubmed/24586717

“The reported coverage of the measles-mumps-rubella (MMR) vaccine is greater than 99.0% in Zhejiang province.  However, the incidence of measles, mumps, and rubella remains high.”

Item #8. Immunoglobulin Handbook, Health Protection Agency

http://webarchive.nationalarchives.gov.uk/20140714084352/http://www.hpa.org.uk/webc/HPAwebFile/HPAweb_C/1242198450982

HUMAN NORMAL IMMUNOGLOBULIN (HNIG):

Indications

  1. To prevent or attenuate an attack in immuno-compromised contacts
  2. To prevent or attenuate an attack in pregnant women
  3. To prevent or attenuate an attack in infants under the age of 9 months

[1] http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm376937.htm

[2] http://archinte.jamanetwork.com/article.aspx?articleid=619215

[3] Poland (1998) Am J Hum Genet 62:215-220

http://www.ncbi.nlm.nih.gov/pubmed/9463343

“ ‘poor responders,’ who were re-immunized and developed poor or low-level antibody responses only to lose detectable antibody and develop measles on exposure 2–5 years later.”

[4] ibid

“Our ongoing studies suggest that seronegativity after vaccination [for measles] clusters among related family members, that genetic polymorphisms within the HLA [genes] significantly influence antibody levels.”

[5] LeBaron et al. (2007) Arch Pediatr Adolesc Med 161:294-301

http://www.ncbi.nlm.nih.gov/pubmed/17339511

“Titers fell significantly over time [after second MMR] for the study population overall and, by the final collection, 4.7% of children were potentially susceptible.”

[6] De Serres et al. (2013) J Infect Dis 207:990-998

http://www.ncbi.nlm.nih.gov/pubmed/23264672

“The index case patient received measles vaccine in childhood.”

[7] Rosen et al. (2014) Clin Infect Dis 58:1205-1210

http://www.ncbi.nlm.nih.gov/pubmed/24585562

“The index patient had 2 doses of measles-containing vaccine.”

What Happens to ALL the Disappearing Can

12311128_1639530499647197_8412997691509003664_nWhat Happens to ALL the Disappearing Cancer Patients?

It’s been almost 20 years since I met my first disappearing patient — a nurse in her early 40s, let’s call her Kate. Kate was diagnosed with breast cancer. As a nurse, she had seen the results of breast cancer treatments. She was terrified, and determined. She was not heading for surgery, nor chemotherapy, nor radiation.

But Kate worked in a hospital. She worked with the doctors who diagnosed her cancer, and she worked with the surgeon, who wanted to schedule her into surgery “as soon as possible.”

The first thing Kate did was slow down. She did some research. It didn’t take her long to remind herself that in Canada, and in the USA, the treatments for cancer are akin to law. No hospital would dare deviate from the deadly three (cut, poison, burn).

Kate’s cancer was not large. She had been tested for cancer last year and no cancer was found. She knew it took many years for cancers to develop. At first, she was furious, “If it is here today, it must have been here last year. Why didn’t you find it last year?” It had not metastasized. It was not growing rapidly and was not affecting her health in any way. In theory, she had lots of time. So, she took some time.

But Kate didn’t look for magic cures. She didn’t search for the latest “cancer medicine.” She wasn’t interested in curing herself. She knew she was a nurse, not a doctor. She searched instead for the “cured” – patients who were diagnosed with cancer, and no longer had cancer. She knew from her work in the hospital, from conversations with patients, and with some staff, that these people existed — but from the perspective of the medical establishment, they seemed to disappear.

It didn’t take her long to find some patients who claimed they were cured. They hadn’t disappeared from life. They were eating, drinking, loving, and living full healthy and prosperous lives. But according to the medical records, they didn’t exist. They were “never cured.”

The medical system treated their cures as “anecdotal.” It ignored them. There was no attempt by any doctors to understand what happened to these cancer patients. They were no longer sick. The medical system looks after sick patients, treats sick patients. These patients were not sick.

Kate looked and listened. Her interest was not clinical science vs. anecdotal evidence. Her interest was personal. She talked, listened, compared stories. From several, she learned about a clinic that did not claim to cure cancer. It did not use medicines to treat cancers. But patients were cured, somehow. This clinic was not in Canada. It was not in the USA. She would have to go to Mexico to learn more.

There are lots of alternative treatment clinics in Mexico. Are some of them valid, using important techniques to cure cancers? Are some of them scams, wanting to take money from desperate clients? Do some of them have a cure that works sometimes, but might not work for her? Kate didn’t know. She did more research. She called the clinic.

The staff did not claim to cure cancer. Claiming to cure cancer is dangerous, even for a clinic outside of North America. They suggested Kate visit the clinic and see what happens there, no charge for a visit, but she would need to pay for her travel to Mexico. Kate had done her research. She had met and talked to patients whose cancers had disappeared.

Kate made her decision. She was familiar with cancer diagnosis techniques in Canada. She had undergone a physical examination, a mammogram, that detected a lump in her breast. Then she had a biopsy, where tissue was taken from the lump and was sent to a lab for analysis. The lab technician tested and examined the sample and issued a diagnosis “cancer” or “not cancer.” Once the diagnosis is issued, everybody swings into action. Kate knew that the mammogram had a high false positive rate and a false negative rate. Many people who are diagnosed with a “possible cancer” by a mammogram do not actually have cancer. She was also aware that cancer biopsies have a false positive rate and a false negative rate, as well. Her work in the hospital, with real patients, had made this very clear.

She didn’t really know for certain if she had cancer. Her surgeon, on the other hand, was still pressing her to schedule treatment.

Kate knew one thing. She had time. She cashed out some savings and booked a “holiday” in Mexico.

At the clinic, Kate was surprised that there was no “cancer diagnosis.” They did check the presence and size of the lump on her breast. But they didn’t repeat the biopsy. The clinic read her diagnostic reports, but did not investigate them further. There was instead a very thorough analysis completed by a suite of doctors. It took two full days of tests and interviews, if I remember correctly.

Kate was asked about her family’s medical histories. She gave blood samples. She was questioned extensively about her diet, about what she eats on a regular basis. What foods does she like and eat often. What foods does she not like and never eat. Doctors examined her lungs, her heart, liver, and other bodily organs with various tests. Her immune system was tested. Extensive interviews about her life, her work, her relationships, and more.

At the time I talked to Kate, I didn’t realize that she was not getting a “medical analysis,” she was actually getting a “healthicine analysis.” Her tests and questions fit perfectly to the hierarchy of healthicine: genetics, nutrition, cells, tissues, organs, bodily systems, body, mind, spirit, and community.

Kate’s genetics were analyzed through family history. There may have been further genetic analysis, I don’t remember all of the details. Her nutritional status was analyzed, not just by analyzing what she ate, and what she preferred to eat, but also by studying what she didn’t like to eat, what she deliberately never ate, what foods she believed she was allergic to. Her cells and tissues were analyzed directly, through blood samples and physical examination, and indirectly through medical history and other tests. Many of her organs were tested for healthiness. Her bodily systems, immune system, circulatory system, respiratory system, hormonal systems and more were analyzed and assessed. Her physical body was measured, weighed, and examined. Her mental health was assessed, as well as her spiritual healthiness. She was in good spirits, even in light of a potentially life threatening illness. Her community health was analyzed as well. Her family, her relationships with her children, her spouse, her parents, her work community, and more.

After a few days, Kate met with a group of doctors to discuss her health, not her illness, her healthiness. Diagnosing illness is difficult. Analyzing healthiness is more complex. It took several doctors and several hours for Kate to learn and understand what they had learned about her healthinesses and her unhealthinesses.

They then “prescribed” two weeks, if I remember correctly, of healthiness training, tailored to Kate’s specific situation. She spent the next two weeks at the clinic, learning to be healthier, not learning how to be “healthier in principle,” rather – learning what Kate needed to do to make her diet, her body, her mind, her spirits, and even her relationships with her communities healthier. She could not change her work community. But she could change how she reacted to and interacted with it – to improve her own health. After two weeks of learning at the clinic, her breast lump had started to shrink.

Kate went back to Canada, to put her learning into action. The lump disappeared. Her diagnosis was still there on paper. But her “cancer” had disappeared. She was retested at her hospital and no cancer was found.

Then Kate began to disappear.

When the surgeon asked again, she explained that she was not going to surgery. The surgeon looked away. He refused to look her in the eye after that.

But Kate didn’t disappear from her family. She went back to her family. She didn’t disappear from her job. She went back to her job. She disappeared from the cancer system. Her cancer disappeared, so, as a cancer patient, she disappeared.

Was she cured? We don’t know. There is no useful definition of a cancer cure. No medical or scientific test that can prove a patient has been cured of cancer. Our cancer treatment statistics have no count for people who are cured of cancer. Patients that are cured, whether they are cured with medicines or not, are not counted. No breast cancer patients are officially cured by medicine. If their cancer goes away without treatment, they disappear from statistics. If their cancer is killed by radiation, chemotherapy or surgery, they are not cured, they are a “survivor.” Everyone knows that cancer survivors are always waiting for the cancer to reappear. Their symptoms are in remission, but their cancer is not cured. They are not cured. With no proof of a cure, it might just be hidden.

Kate no longer has cancer. She paid, from her own pocket, for her trip to a clinic in Mexico. After the trip, her cancer disappeared. She had medical insurance. But her insurance wouldn’t pay for her trip. Insurance pays for treatments, not for cures. It pays for treatments, even if they fail. But it does not pay for success. Success disappears.

There are two ways for a cancer patient to disappear. You might be cured by health. Or you might be cured by a medicine that is not approved. In both cases, the medical system will ignore the cure, and ignore the patient.

In healthicine, there are no incurable diseases. If it is not curable – it is not a disease, it is a handicap, a disability, a deficiency, or simply an attribute of the person. All diseases can be cured by definition.

I have since met several cancer patients who have disappeared, and not just cancer patients. Maybe you have too? I’ve met more by internet, email, etc. There is no way for me to determine if a disappeared patient actually had cancer, if their treatment cured their cancer, if their body cured their cancer or if they still have cancer. We can only tell if there is another cancer diagnosis. Nothing can be told from the absence of a diagnosis.

There is no way for any doctor to tell either. There are no tests for a cancer cure. There is no way to recognize, much less document a cancer cure. There are no statistics for cancers cured.

Many cured patients don’t disappear quietly. They speak out. They write books and newspaper articles. They blog. But it doesn’t matter. They still don’t count. Once cured, they disappear. The medical system does not study their cases, does not study their diagnosis, does not study their cures. For chronic diseases, like cancer, arthritis, diabetes, heart disease, even obesity, and many more, there are no techniques to document “cured patients.” As a result, there are no statistics for “cured patients” of any chronic illness.

Once they are cured, they disappear. Health doesn’t cure illness, it disappears illness. And medicine doesn’t count people who have disappeared.

To your health

The Truth About Science-Based Medicine! Fact or Fiction?

10665731_1492605317673050_5545234100728925724_n

The current healthcare debate has brought up basic questions about how medicine should work. On one hand we have the medical establishment with its enormous cadre of M.D.s, medical schools, big pharma, and incredibly expensive hospital care. On the other we have the semi-condoned field of alternative medicine that attracts millions of patients a year and embraces literally thousands of treatment modalities not taught in medical school.

One side, mainstream medicine, promotes the notion that it alone should be considered “real” medicine, but more and more this claim is being exposed as an officially sanctioned myth. When scientific minds turn to tackling the complex business of healing the sick, they simultaneously warn us that it’s dangerous and foolish to look at integrative medicine, complementary and alternative medicine, or God forbid, indigenous medicine for answers. Because these other modalities are enormously popular, mainstream medicine has made a few grudging concessions to the placebo effect, natural herbal remedies, and acupuncture over the years. But M.D.s are still taught that other approaches are risky and inferior to their own training; they insist, year after year, that all we need are science-based procedures and the huge spectrum of drugs upon which modern medicine depends.

If a pill or surgery won’t do the trick, most patients are sent home to await their fate. There is an implied faith here that if a new drug manufacturer has paid for the research for FDA approval, then it is scientifically proven to be effective. As it turns out, this belief is by no means fully justified.

The British Medical Journal recently undertook an general analysis of common medical treatments to determine which are supported by sufficient reliable evidence. They evaluated around 2,500 treatments, and the results were as follows:

  • 13 percent were found to be beneficial
  • 23 percent were likely to be beneficial
  • Eight percent were as likely to be harmful as beneficial
  • Six percent were unlikely to be beneficial
  • Four percent were likely to be harmful or ineffective.

This left the largest category, 46 percent, as unknown in their effectiveness. In other words, when you take your sick child to the hospital or clinic, there is only a 36 percent chance that he will receive a treatment that has been scientifically demonstrated to be either beneficial or likely to be beneficial. This is remarkably similar to the results Dr. Brian Berman found in his analysis of completed Cochrane reviews of conventional medical practices. There, 38 percent of treatments were positive and 62 percent were negative or showed “no evidence of effect.”

For those who have been paying attention, this is not news. Back in the late 70’s the Congressional Office of Technology Assessment determined that a mere 10 to 20 percent of the practices and treatment used by physicians are scientifically validated. It’s sobering to compare this number to the chances that a patient will receive benefit due to the placebo effect, which is between 30 percent and 50 percent, according to various studies.

We all marvel at the technological advances in materials and techniques that allow doctors to perform quadruple bypass surgeries and angioplasties without marveling that recent studies indicate that coronary bypass surgery will extend life expectancy in only about three percent of cases. For angioplasty that figure sinks to zero percent. Those numbers might be close to what you could expect from a witch doctor, one difference being that witch doctors don’t submit bills in the tens of thousands of dollars.

It would be one thing if any of these unproven conventional medical treatments were cheap , but they are not. Angioplasty and coronary artery bypass grafting (CABG) alone cost $100 billion annually. As quoted by President Obama in his drive to bring down medical costs, $700 billion is spent annually on unnecessary tests and procedures in America. As part of this excess, it is estimated that 2.5 millionunnecessary surgeries are performed each year.

Then there is the myth that this vast expenditure results in excellent health care, usually touted as the best in the world (most recently by Rush Limbaugh as he emerged from a hospital in Hawaii after suffering chest pain). But this myth has been completely undermined. In 2000 Dr. Barbara Starfield, writing in the Journal of the American Medical Association, estimated that between 230,000 and 284,000 deaths occur each year in the US due to iatrogenic causes, or physician error, making this number three in the leading causes of death for all Americans.

In 2005 the Centers for Disease Control and Prevention reported that out of the 2.4 billion prescriptions written by doctors annually, 118 million were for antidepressants. It is the number one prescribed medication, whose use has doubled in the last ten years. You would think, therefore, that a remarkable endorsement is being offered for the efficacy of antidepressants. The theory behind standard antidepression medication is that the disease is caused by low levels of key brain chemicals like serotonin, dopamine, and norepinephrine, and thus by manipulating those imbalanced neurotransmitters, a patient’s depression will be reversed or at least alleviated.

This turns out to be another myth. Prof. Eva Redei of Northwestern University, a leading depression researcher, has discovered that depressed individuals have no depletion of the genes that produce these key neurotransmitters compared to people who are not depressed. This would help explain why an estimated 50 percent of patients don’t respond to antidepressants, and why Dr. Irving Kirsch’s meta-analysis of antidepressants in England showed no significant difference in effectiveness between them and placebos.

You have a right to be shocked by these findings and by the overall picture of a system that benefits far fewer patients than it claims. The sad fact is that a disturbing percentage of the medicine we subject ourselves to isn’t based on hard science, and another percentage is risky or outright harmful. Obviously, every patient deserves medical care that is evidence-based, not just based on an illusory reputation that is promoted in contrast to alternative medicine.

We are not suggesting that Americans adopt any and all alternative practices simply because they are alternative. These, too, must demonstrate their effectiveness through objective testing. But alternative modalities should not be dismissed out of hand in favor of expensive and unnecessary procedures that have been shown to benefit no one absolutely except corporate stockholders.

Source: The HuffPost Healthy Living, November 18th, 2014, http://www.huffingtonpost.com/dr-larry-dossey/the-mythology-of-science_b_412475.html

Political Science! – The Politics of Medical Science and Research

The Politics of Science (Part 1)

The following last chapter in Robert O. Becker’s book, The Body Electric” should give some insight into the politics of science. How and why some researchers and their research gets funded while others don’t. Maybe, it will explain why many researchers in CFS continue to bark up the wrong tree and will not dare delve into truth of the matter – into the Big Lie – since this might very well cut their funding, ruin their reputations, and even end their careers. This has happened to many honorable and brilliant scientists such as Dr. Antione BeChamp, Dr. Livingston Wheller, Dr. Royal Rife, Dr. Gunther Enderlien, Dr. Duesburg, Dr. Robert Becker, Dr Nassens and finally Dr. Robert O. Young.

Postscript: Political Science

An important scientific innovation rarely makes its way by gradually winning over and converting its opponents: it rarely happens that Saul becomes Paul. What does happen is that its opponents gradually die out and that the growing generation is familiarized with the idea from the beginning.-Max PlanckDispassionate philosopher inquiring into nature from the sheer love of knowledge, single-minded alchemist puttering about a secluded basement in search of elixers to benefit all humanity – these ideals no longer fit for most scientists. Even the stereotype of Faust dreaming of demonic power is outdated, for most scientists today are overspecialized and anonymous – although science as a whole is somewhat Mephistophelian in its disregard or the effects of its knowledge. It’s a ponderous beast, making enormous changes in the way we live but agonizingly slow to change its own habits and viewpoints when they become outmoded.

The public’s conception of the scientist remains closest to its image of the philosopher – cold and logical, making decisions solely on the basis of facts, unswayed by emotion. The lay person’s most common fear about scientists is that they lack human feelings. During my twenty-five years of research I’ve found this to be untrue yet no cause for confort. I’ve occasionally seen our species’ nobler impulses among them, but I’ve also found that scientists as a group are at least as subject to human failings as people in other walks of life.It has been like this throughout the history of science. Many, perhaps even most, of its practitioners have been greedy, power-hungry, prestige-seeking, dogmatic, pompous asses, not above political chicanery and outright lying, cheating, and stealing. Examples abound right from the start. Sir Francis Bacon, who in 1620 formulated the experimental method on which all technical progress since then has been founded, not only forgot to mention his considerable debt to William Gilbert but apparently plagiarized some of his predecessor’s work while publicly belittling it. In a similar way Emil Du Bois-Reymond based his own electrical theory of nerve impulse on Carlo Matteucci’s work, then tried to ridicule his mentor and take full credit.

Many a genius has been destroyed by people of lesser talent defending the status quo. Ignaz Semmelweis, a Hungarian physician who practiced in Vienna during the mid-nineteenth century, demanded that his hospital colleagues and subordinates wash their hands, especially when moving from autopsies and sick wards to the charity childbirth ward he directed. When the incidence of puerperal fever and resultant death declined dramatically to well below that of the rich women’s childbirth ward, proving the importance of cleanliness even before Pasteur, Semmelweis was fired and vilified. His livelihood gone, he committed suicide soon afterward.

The principle figure who for decades upheld the creed that dedifferentiation was impossible was Paul Weiss, who dominated biology saying the things his peers wanted to hear. Weiss was wrong, but along the way he managed to cut short a number of careers.

For many years the American Medical Association scorned the idea of vitamin-deficiency diseases and called teh EEG electronic quackery. Even today that august body contends that nutrition is basically irrelevant to health. As the late-eighteenth-century Italian experimenter Abbe Alberto Fortis observed in a letter chiding Spallanzani for his closed-minded stance on dowsing, “… derision will never help in the development of true knowledge.”In the past, these character flaws couldn’t wholly prevent the recognition of scientific truths. Both sides of a controversy would fight with equal vehemence, and the one with better evidence would usually win sooner or later. In the last four decades, however, changes in the structure of scientific institutions have produced a situation so heavily weighted in favor of the establishment that it impedes progress in healthcare and prevents truly new ideas from getting a fair hearing in almost all circumstances. The present system is in effect a dogmatic religion with a self-perpetuating priesthood dedicated only to preserving the current orthodoxies. The system awards the sycophant and punishes the visionary to a degree unparalleled in the four-hundred-year history of modern science.

This situation has come about because research is now so expensive that only governments and multinational corporations can pay for it. The funds are dispensed by agencies staffed and run by bureaucrats who aren’t scientists themselves. As the system developed after World War 2, the question naturally arose as to how these scientifically ignorant officials were to choose among competing grant applications. The logical solution was to set up panels of scientists to evaluate requests in their fields and then advise the bureaucrats.

This method is based on the naive assumption that scientists really are more impartial than other people, so the result could have been predicted decades ago. In general, projects that propose a search for evidence in support of new ideas aren’t funded. Most review committees approve nothing that would challenge the findings their members made when they were struggling young researchers who created the current theories, whereas projects which ponder to these elder egos receive lavish support. Eventually, those who play the game beome the new members of the peer group, and thus the system perpetuates itself. As Erwin Chargaff has remarked, “This continual turning off and on of the financial faucets produces Pavlovian effects,” and most research becomes mere water treading aimed at getting paid rather than finding anything new. The intuitive “lunatic twinge,” the urge to test a hunch, which is the source of all scientific breakthroughs, is systematically excluded.

There has even been a scientific study documenting how choices made by the peer review system depend almost entirely on whether the experts are sympathetic or hostile to the hypothesis being suggested. True to form, the National Academy of Sciences, which sponsored the investigation, suppressed its results for two years.

Membership on even a few review boards soon establishes one’s status in the “old boys’ club” and leads to other benefits. Manuscripts submitted to scientific journals are reviewed for validity in the same way as grant requests. And who is better qualified to judge an article than those same eminant experts with their laurels to guard? Publication is accepted as evidence that an experiment has some basic value, and without it the work sinks without a ripple. The circle is thus closed, and the revolutionary, from whose ideas all new scientific concepts come, is on the outside. Donald Goodwin, chairman of psychiatry at the University of kansas and an innovative researcher on alcoholism, has even put it in the form of exasperation: “If it’s trivial, you can probably study it. If it’s important, you probably can’t.”Another unforeseen abuse has arisen, which has lowered the quality of training in medical schools. As the peer review system developed, academic institutions saw a golden opportunity. If the government wanted all this research done, why shouldn’t it help the schools with their overhead, such as housing, utilities, bookeeping and ultimately the salaries of the researchers, who were part of the faculty? The influx of money corroded academic values. The idea arose that the best teacher was the best researcher, and the best researcher was the one who pulled down the biggest grants. A medical school became primarily a kennel of researchers and only secondary a place to teach future physicians. To survive in academia, you have to get funded and then get published. The epidemic of fraudalent reports – and I believe only a small percentage of the actual fakery has been discovered – is eloquent testimony of the pressure to make a name in the lab.There remain today few places for those whose talents lie in teaching and clinical work. Many people who don’t care about research are forced to do it anyway. As a result, medical journals and teaching staffs are both drowning in mediocrity.

Finally, we must add to these factors the buying of science by the military. To call it a form of prostitution is an insult to the oldest profession. Nearly two-thirds fo the 47-billion 1984 research budget was for military work, and in the field of bioelectricity the proportion was even higher. While military sponsors often allow more technical innovation than others, their employees must keep their mouths shut about environmental hazards and other moral issues that link science to the broader concerns of civilization. In the long run, even the growth of pure knowledge (if there is such a thing) can’t flourish behind this chain link fence.

If someone does start a heretical project, there are several ways to limit this threat. Grants are limited, usually for a period of one or two years. Then the experimenter must reapply. Every application is a volumous document filled with fine-print forms and meaningless bureaucratic jargon, requiring many days of data compilation and “creative wriiting.” Some researchers may simply get tired of them and quit. In any case, they must run the same gauntlet of peers each time. The simplest way to nip a challenge in the bud is to turn off the money or keep the reports out of major journals by means of anonymous value judgements from review committees. You can always find something wrong with a proposal or manuscript, no matter how well written or scientifically impeccable it may be.

Determined rebels use guerrilla tactics. There are so many funding agencies that the left hand often knoweth not what the right hand doeth. A proposal may get by an obscure panel whose members aren’t yet aware of the danger. The snowstorms of paper churned out by the research establishment have required the founding of many new journals in each subspecialty. Some of these will accept papers that would automatically be rejected by the big ones. In addition, there’s an art to writing a grant proposal that falls within accepted guidelines without specifying exactly what the researchers intend to do.

If these methods succeed in prolonging the apostasy, the establishment generally exerts pressure through the schools. Successful academics are almost always true believers who are happy to curry favor by helping to deny tenure to “questionable” investigators or by harassing them in a number of ways. For example, in 1950 Gordon A. Atwater was fired as chairman of the American Museum of Natural History astronomy department and curator of the Hayden Planetarium for publicly suggesting that Immanuel Velikovsky’s ideas should receive a fair hearing. That same year Velikovsky’s first book, Worlds in Collision, was renounced by his publisher (MacMillan) even though it was a best seller, because a group of influential astronomers led by Harvard’s Harlow Shapley threatened to boycott the textbook department that accounted for two thirds of the company’s sales. No matter what one may think of Velikovsky’s conclusions, that kind of backstairs persuasion is not science.As the conflict escalates, the muzzled freethinker often goes directly to the public to spread the pernicious doctrines. At this point, the gloves come off. Already a lightning rod for the wrath of the Olympian peers, the would-be Prometheus writhes under attacks on his or her honesty, scientific competence, and personal habits. The pigeons of Zeus cover the new ideas with their droppings and conduct rigged experiments to disprove them. In extreme cases, government agencies staffed and advised by the establishment begin legal harrassment, such as the trial and imprisonment that ended the career and life of Wilhelm Reich.

Sometime during or after the battle, it generally becomes obvious that the iconoclast was right. The counterattack then shifts toward historical revision. Establishment members publish papers claiming the new ideas for themselves and omitting all references to the true originator. The heretic’s name is remembered only in connection with a condescending catchphrase, while his or her own research programs, if any remain, are defunded and the staff dispersed. The facts of the case eventually emerge, but only at an immense toll on the innovator’s time and energy. To those who haven’t tried to run a lab, these may seem like harsh words, unbelievable, even paranoid. Nevertheless, these tactics are commonplace, and I’ve had personal experience with each and every one of them.

I got a taste of the real world in my very first foray into research. After World War 2, I continued my education on the GI Bill, but those benefits expired in 1947. I’d just married a fellow student named Lilian, who had caught my eye during our first orientation lecture, and I needed a summer job to help pay expenses and set up housekeeping. I was lucky enough to get work as a lab assistant in the NYU School of Medicine’s surgical research department.I worked with Co Tui, who was evaluating a recently published method for separating individual amino acids from proteins as a step toward concentrating foods for shipment to the starving. Dr. Cok, a tiny man whose black, spiky hair seemed to broadcast enthusiasm, inspired me enormously. He was a brilliant researcher and a good friend. With him I helped develop the assay technique and began to use it to study changes in body proteins after surgery.

I was writing my first scientific paper when I walked to work one morning and found our laboratory on the sidewalk – all our equipment, notes, and materials in a junk pile. I was told neither of us worked there anymore; we were welcome to salvage anything we wanted from the heap.

The head secretary told me what happened. This was during a big fund drive to build the present NYU Medical Center. One of the society surgeons had lined up a million-dollar donation from one of his patients and would see that it got into the fund, if he could choose a new professor of experimental surgery – now. As fast as that, Co Tui and his people were out. I vowed to Lilian: “Whatever i do in medicine, I’m going to stay out of research.”I’m happy that I wasn’t able to keep my promise. The research itself was worth it all. Moreover, I don’t want to give the impression that I and my associates were alone against the world. Just when hope seemed lost, there was always a crucial person, like Carlyle Jacobson or the research director’s secretary to help us out. However, right from my first proposal to measure the current of injury in salamanders, I found that research would mean a constant battle, and not only with administrators.Before I began, I had to solve a technical problems with the electrodes. Even two wires of the same metal had little chemical differences, which gave rise to small electrical currents that could be misinterpreted as coming from the animal.

Also, the slightest pressure on the animal’s skin produced currents. No one understood why, but there they were. I found descriptions in the older literature of silver electrodes with a layer of silver chloride applied to them, which were reported to obviate the false interelectrode currents. I made some, tested them, and then fitted them with a short length of soft cotton wick, which got rid of the pressure artifact. When I wrote up my results, I briefly described the electrodes. Afterward I received a call from a prominent neurophysiologist who wanted to visit the lab. “Very nice,” I thought. “Here’s some recognition already.” He was particularly interested in how the electrodes were made and used. Some months later, dammed if I didn’t find a paper by my visitor in one of the high-class journals, describing this new and excellent electrode he’d devised for measuring direct-current potentials.

A couple of years later, while Charlie Bachman and I were looking for the PN junction diode in bone, I was asked to give a talk on bone electronics at a meeting in New York City. The audience included engineers, physicists, physicians, and biologists. It was hard to talk to such a diverse group. The engineers and physicists knew all about the electronics but nothing about bone, the biologists knew all about the bone but nothing about electronics, and the physicians were only interested in therapeutic applications. At any rate, I reviewed some bone structure for the physicists and some electronics for the biologists, and then went on to describe my experiments with Andy Bassett on bone piezoelectricity.

I probably should have sat down at that point, but I thought it would be nice to talk about our present work. The rectifier concept was tremendously exciting to me, and I thought wwe might get some useful suggestions from the audience, so I described the experiments showing that collagen and apatite were semiconductors, and discussed the implications. After each talk, a short time was set aside for questions and comments, generally polite and dignified. However, as soon as I finished, a well-known orthopedic researcher literally ran up to the audience microphone and blurted out, “I have never heard such a collection of inadequate data and misconceptions. It is an insult to this audience. Dr. Becker has not presented satisfactory evidence for any semiconducting property in bone. The best that can be said is that this material may be a semi-insulator.”

Semiconductors are so named because their properties place them between conductors and insulators, so you could very well call them semi-insulators; the meaning would be the same. My opponent was playing a crude game. Where saying these derogatory things about me, he was actually agreeing with my conclusion, merely using a different term.This man’s antagonism had begun a couple of years before. When Andy Bassett and I had finished our work on the piezoelectric effect in bone, we wrote it up, submitted it to a scientific journal, and got it accepted. Unbeknownst to us, this fellow had been working on the same thing, but hadn’t gotten as far in his experiments as we. Somehow he learned of our work and its impending publication. He called Andy, asking us to delay our report until he was ready to publish his own data. Andy called me to talk it over. What counts in the scientific literature is priority; he was asking us to surrender it. There was no ethical basis for his request, and I would never have thought of asking him to delay had the situation been reversed. I said, “Not on your life.” Our paper was published, and we’d acquired a “friend” for life.

Now there he was at the microphone trying to scuttle my presentation with a little ambiguous double-talk. I thought, “He must be doing the same work as we are again. If he wins this encounter, I’ll have trouble getting my data published, and he’ll have a clear field for his.” Instead of defending the data, I explained that semi-insulator and semiconductor were one and the same. I said I was surprised he didn’t know that, but appreciated his approval of my data! Someone else in the audience stood up in support of my position, and the crisis was past. The lab isn’t the only place a scientist has to stay alert.In 1964, soon after the National Institutes of Health approved the grant for our continuing work on bone, I received the VA’s William S. Middleton Award for outstanding research. That’s a funny story in itself. The award is given by the VA’s Central Office (VACO), whose members had already decided on me, but candidates must be nominated by regional officers, and the local powers were determined I shouldn’t get it. Eventually, VACO had to order them to nominate me.

The award put me on a salary from Washington instead of Syracuse, and due to the pressure from VACO I was soon designated the local chief of research, replacing the man who signed all the papers at once. I was determined to put the reseach house in order, and I instituted a number of reforms, such as public disclosure of the funding allocations, and productivity requirements, no matter how prominent an investigator might be. Many of the reforms have been adopted throughout the VA system. They didn’t make me popular, however. Over the next several years there was continuous pressure from the medical school to allocate VA research funds for people I felt were of little value to the VA program itself; thus the money would have constituted a grant to the school. I knew that if I didn’t deliver I would eventually be removed from my position as chief of research. In that case, I would go back on a local clinical salary and my research program would again be in jeopardy. Therefore, at the beginning of 1972 I applied for the position of medical investigator in the VA research system, a post in which I would be able to devote up to three fourths of my time to research. I was accepted. The job was to begin a few months later; in the meantime I continued as chief of research.

Apparently, my new appointment escaped the notice of my local opponents. I’d accepted several invitations to speak at universities in the South and combined them all into a week’s trip. I left the office a day early to prepare my materials and pack. While I was still home, my secretary called. She was crying, and said she’d just gotten a memo firing me as chief or research and putting me to work as a general-duty medical officer in the admitting office. This not only would have closed our lab, but also would have kept me from practicing orthopedic surgery.

It was a nice maneuver but, fortunately for me, it wasn’t legal. As medical investigator, I could be fired only by Washington, and the local chief of staff soon got a letter from VACO ordering him to reinstate me. Soon I began to get on some “enemies lists” at the natinal level too. In December 1974 I got word that our basic NIH grant (the one on bone) hadn’t been renewed. No reasons were given. This was highly irregular, since applicants normally got the “pink sheets” with at least the primary reviewer’s comments, so they could find out what they’d done wrong. Instead I was told I could write to the executive secretary for a “summary” of the deliberations.

The summary was half a page of double-spaced typing. It said my proposal had been lacking in clarity and direction, and that the experimental procedures hadn’t been spelled out in enough detail. The main problem seemed to be that I was planning to do more than the reviewer thought I could do with the money I was requesting. In addition, my report on the perineural cell research with Bruce Baker was criticized as “data poor.” The statement concluded: “On the other hand, there are some areas which appear to be worthy of support and are reasonably well described, e.g., bone growth studies, regenerative growth, and electrical field effects.”

I was, to say the least, puzzled. The subjects “worthy of support” were precisely the main ones we were working on. It didn’t make any sense until I reflected that this was just after I’d helped write the first Sanguine report and had begun to testify about power line dangers before the New York Public Service Commission. Perhaps the Navy was pressuring the NIH to shut me up.If someone at the federal level was trying to lock me out as early as 1974, he forgot to watch all the entrances, for my proposal of that year on acupuncture was approved. I’d originally tacked this on to the main NIH application, where is was criticized as inappropriate. I merely sent it off to a different study section, which funded it. After a year we had the positive results described in Chapter 13, and I presented them at an NIH acupuncture conference in Bethesda, Maryland. Ours was the only study going at the problem from a strictly scientific point of view, that is, proceeding from a testible hypothesis, as opposed to the empirical approach of actually putting the needles in and trying to decide if they worked. To the NIH’s basic question – is the system of points and lines real? – our program was the only one giving an unequivocal answer: yes.

Nevertheless, when the grant came up for approval in 1976, it, too, was cut off. The stated reasons were that we hadn’t published enough and that the electrical system that we found didn’t have any relation to acupuncture. The first was obviously untrue – we’d published three papers, had two more in press, and had submitted six others – and the second was obvious pettifogging. How could anyone know what was related to acupuncture before the research had been done? I happened to know the chairman of the NIH acupuncture study section, so I wrote him a letter. He said he was surprised, because the group itself had been pleased with our report. By then it was obvious that something was up.As of October 1976 we would have no more NIH support. As the money dwindled, we juggled budgets and shaved expensese to cover out costs, and with the help of Dave Murray, who was now chairman of the orthopedic surgery department at the medical school, we kept the laboratory intact and enormously productive. We actually published more research than when we hadn’t been under fire.Early in that same year, however, my appointment as medical investigator had expired, and I had to reapply. Word came back that my application had been “deferred,” that is, it had been rejected, but I had the option of reapplying immediately. In her accompanying letter, the director of the VA’s Medical Research Service wrote, “While your past record and strong letters of support [the peer reveiws of my application] were considered favorable, the broad research proposal with sketchy detail of technique and methodology was not considered approvable.” Now, the instructions for medical investigator applications clearly stated that I was to spell out past accomplishments and indicate future directions only in broad outline. Instead, the director was applying the criteria for first-time grant applications just entering research. She invited me to resubmit the proposal in the other format. But that would not have helped. Even if the second application was approved, the money would arrive six months after the lab had been closed and we had gone our separate ways.

There was another strange thing about the rejection. By that time all federal granting agencies had to provide the actual reports (with names deleted) of the peers who had done the reviewing. Three out of the four were long, detailed, well-thought-out documents in the standard critique format; they’d been neatly retyped, single spaced, on “reviewers’s report” forms with an elite typewriter. One was absolutely lavish in its praise, saying that the VA was fortunate to have me and that the proposed work would undoubtedly make great contributions to medicine. Another was almost as laudatory.One name had inadvertently been left on one page of the third review. It was the name of a prominent orthopedic researcher with whom I had disagreed for years about commercialization of bone-healing devices. Since our mutual disregard was well known in the orthopedic service, I feel it was indefensible for the director to ask him to review my application in the first place. Perhaps she expected a more damaging critique from him. He did complain that the proposal was insufficiently detailed. However, his appraisal was quite fair and even said my proposed work was of “fundamental importance to the field of growth and healing.” It obviously led up to a recommendation for approval, but the last sentence of that paragraph had been deleted.The last review was half a page of vague objections, typed double-spaced on a pica machine with no semblance of the standard format. There was a revealing mistake (“corrective” tissue instead of connective tissue) that showed the writer had glanced at my proposal for cues but really didn’t know what it was about. Strangest of all was the phrasing of this pseudoreview: “[Becker’s proposal] is broad and sweeping in scope and contains little documentation for technique and methodology. However, in view of his past record and strong letters of support, a decision should be deferred…” The director had used it almost word for word in her letter.

She certainly had no motive for such conduct herself. I’d met her briefly a few years before. In 1966 she’d been appointed chief of research at the Buffalo VA Medical Center and had visited Syracuse to see how I’d organized the program there. Our conversation was pleasant but quite innocuous….