Category Archives: Diabetes

How NOT To DIE! and How To Live!

Screen Shot 2019-10-28 at 10.20.39 AM

20 Ways on How to Live Longer and Healthier – Free from ALL Sickness and Disease and Old Age

Have you heard about the ravages of acid rain in Australia and the loss of the coral reef or in Alaska and the loss of millions of pine trees or maybe you have heard about the oceans and the pH dropping because of acid rain. The cause is the result of toxic acidic carbon emissions in the global environment. Acid rain damages the leaves and needles on trees, reduces a tree’s ability to withstand cold, drought, disease and pests, and even inhibits or prevents plant reproduction. The oceans of the World are dying because of acidic carbon emissions from cars and cows. In an effort for the Earth and the oceans to stay alive and combat increased acidic pollution, as tree roots pull important nutrients such as calcium and magnesium from the soil and calcium and the oceans are pulling calcium and magnesium from the coral reefs and sodium from the ocean water increasing acidity. The extraction of alkaline minerals from the soil and water is necessary for all living things on the earth and oceans to stay alive and avoid sudden death. These alkaline nutrients help to balance the increased effects of acid rain, but as they become depleted from the soil or from the ocean, the trees’ and marine life’s ability to survive is strained and placed in certain danger of extinction. Just look at the pictures below and see what is happening to the forests of Denali, Alaska and the great barrier reef in Queensland, Australia. The forests in Alaska and the great barrier reef in Queensland, Australia are both headed towards irreversible extinction because of acid rain.

Screen Shot 2019-10-28 at 10.16.18 AM.png

We Are All Subject to Acid Rain!

What if I told you that most ALL people living today are unknowingly doing similar things to their body? A highly acidic lifestyle and diet is like acid rain in our blood, interstitial fluids and intracellular fluids that constitutes over 65% of the whole body. While the body has an alkaline buffering system (headed up by the stomach) in place to ensure that the blood and the interstitial fluids stay slightly alkaline at 7.365 pH, the depletion of alkaline minerals from the bones, muscles and other parts of your body may leave YOU vulnerable to health issues leading to ALL sickness and disease.

71342345_2398677260399180_1488415775352946688_n

What is pH – The Power of Hydrogen or Perfectly Healthy or Both?

The pH (potential of hydrogen) is the measurement of acid (a measurement of hydrogen ions or protons) or alkalinity (a measurement of reduced hydrogen or electrons) on a scale from 0 to 14 with a midpoint of 7. The lower the number the higher the acidity (or the greater the concentration of hydrogen ions or protons) based upon a logarithm to the power of negative 10! For example, the pH of a healthy ocean environment free from acid rain would be 8.350. If the ocean pH drops 1 point due to acid rain to a pH of 7.350, which is a 10 times drop in pH, all life as we know it in the oceans would die. In fact, if the ocean pH drops from 8.350 to 8.100, which is a .235 drop, ALL life in the oceans would die! That is all it takes for ALL marine life to cease in our Oceans! JUST a small drop of 2/10’s of 1 point for ALL life to end! Here is another very important example that I truly want you to understand. The healthy pH of the human blood and interstitial fluids which makes up 80 percent of ALL body fluids is 7.365. This pH of the blood and interstitial fluids is a dynamic and is always changing. How do I know this? Because Dr. Galina Migalko, MD, NMD and I are the only scientist in the World measuring and comparing the pH and chemistries of the blood against the pH and chemistries of the interstitium. This is critical to truly understand when you are moving toward metabolic alkalosis or metabolic acidosis and preventing and/or reversing any sickness and disease as well as determining the efficacy of any non-invasive or invasive treatments. In other words, are the treatments for any sickness and disease making you sicker or better, whether conventional or traditional? This can now be measured and determined with certainty.

0-15

Why is YOUR Stomach So Important to the pH of the Blood and Interstitum

So why does the body, primarily the stomach work so hard to maintain the delicate pH of the blood and interstitial fluids of the interstitium? Here is the most important answer YOU will read in YOUR life! If the blood and interstitial fluids drop below 7.100 from the ideal healthy pH of 7.365 you would go into a coma. When the blood and interstitial fluid pH drops to 6.900 you are DEAD! From what? Not global warming but from body warming or in other words acidosis! The key to avoid death is to maintain the alkaline design of the blood and interstitial fluids at a precise pH of 7.365 which can be measured without drawing one drop of blood or interstitial fluid. The technology is here and the science is real!

What is the Common Denominator of pH in Relationship to the Cause of ALL Sickness and Disease

This is the common denominator for ALL sickness and disease – ALL sickness and disease are caused by acidosis or acid rain or body warming! Therefore, there are NO specific diseases, there are ONLY specific disease or sickness conditions. All sickness and disease is caused by acid rain from within and is exactly what is happening in the oceans, the soils of our planet and in all humanity. Planetary and human sickness and disease is on the rise because of personal acidic lifestyles and dietary choices and because of ignorance. Name any disease and that disease or sickness is caused by metabolic, respiratory, gastrointestinal or environmental acidosis.

Check out this YouTube video on the 7 signs YOU and TOO Acidic

I hope you can see NOW how important it is to understand and then monitor your pH daily by having your your blood and interstitial fluids tested. Unfortunately, this new science and technology for testing the pH of the blood and interstitial fluids is limited Worldwide. (For more information concerning the testing of the blood and interstitial fluids or to make an appointment email: phmiraclelife@gmail.com) In the meantime, there is a simple, inexpensive and noninvasive way for testing the fluids of the interstitium, but not of the blood, for those of you who desire to monitor your interstitial fluid pH daily. You can test the pH of the morning urine, since this urine is a product of the interstitium and NOT of the blood, by using special pHydrion strips (www.phoreveryoung.com). When you measure the pH of your urine using these special pHydrion strips it is important to achieve each morning a pH of at least 7.300 by following the suggested lifestyle and diet as described below. When you are testing your morning urine, which is the most acidic time of the day, you are testing the pH of the interstitial fluids which makes up over 60 percent of the body fluids (25 liters). You can also test your saliva using the same special pHydrion strips. When you are testing your saliva pH you are testing your body reserves available for buffering acid rain. Both the urine and saliva pH should be at least 7.300 and must be tested daily as you follow the pH Miracle alkaline lifestyle and diet in order to achieve an ideal pH for “Perfect Health!”

What Does the Stomach Have to Do With pH

An acidic pH of the blood and then interstitial fluids is what causes acid reflux—a condition in which the stomach creates when it is trying to buffer dietary acids from your toxic acidic food or drink ingested or metabolic acids from all functions of the body or respiratory acids from your respiratory system to maintain the pH of the blood and interstitial fluids at a delicate pH of 7.365. The following is the stomach chemistry as it creates sodium bicarbonate to buffer excess acid rain on your blood, interstitial fluids and intercellular fluids: H20 (water) + NaCl (salt) + C02 (carbon dioxide) = NaHC03 (sodium bicarbonate) + HCL (hydrochloric acid).

This may be the first time you have ever heard this, but I have been saying this for many years, “the stomach DOES NOT DIGEST FOOD it ALKALIZES FOOD and protects ALL of our body fluids, organs and tissues from dietary, metabolic, respiratory and environmental acidosis! In other words, the stomach is an organ of contribution and NOT an organ of digestion. Eat any food without chewing it, like a piece of corn and see what happens. The corn comes out of your anus the same way it went into your mouth. The stomach digests nothing. The hydrochloric acid in your stomach is a waste product of sodium bicarbonate production for buffering acid rain or acidic waste from what you eat, what you drink, what you breath and what you think. This is why when an athlete goes into lactic acidosis they throw-up to rid their body of all the hydrochloric acid build-up in the gastric pits of the stomach. You see the body is working hard to buffer the increased lactic acid from increased metabolism so the athlete doesn’t die from acidic rain from a declining pH in the blood and interstitium. Even when a pregnant woman throws-up (generally in her first trimester) her stomach is producing sodium bicarbonate to buffer the acidic loads in her and her unborn child’s blood and interstitium. The increased need for alkalinity during pregnancy is significant and is NOT understood or even considered by medical savants. They think, unknowingly that the body just takes care of the pH of the blood and tissues and that what you eat, what you drink, what you breath, and what you think cannot effect this delicate pH balance. You see, morning sickness is nothing more than increased acids from diet, respiration and metabolism! It requires twice the energy to make a baby and with that the pregnant Mother has increased acid rain. So I want you to understand that the stomach’s main purpose is to maintain the alkaline design of the body to keep it alive. That is IT! Get IT?

To learn more about the physiology of the stomach read the following book. You can order this book online at the following link: http://www.drrobertyoung.com

51b+twj+y-L-2

How is acid/base created in the body?

a) The parietal or cover cells of the stomach split the sodium chloride of the blood. The sodium is used to bind with water and carbon dioxide to form the alkaline salt, sodium bicarbonate or NaHCO3. The biochemistry is: H20 + CO2 + NaCl = NaHCO3 + HCL. This is why I call the stomach an alkalizing organ NOT an organ of digestion. The stomach DOES NOT digest the food or liquids you ingest it alkalizes the food and liquid you ingest.

b) For each molecule of sodium bicarbonate (NaHCO3) made, a molecule of hydrochloric acid (HCL) is made and secreted into the so-called digestive system – specifically, the stomach (the gastric pits in the stomach) – to be eliminated. Therefore HCL is an acidic waste product of sodium bicarbonate production created by the stomach to alkalize the food and liquids ingested and to maintain the delicate pH of the blood and interstitial fluids at a pH of 7.365.

c) The chloride ion from the sodium chloride (salt) binds to an acid or proton forming HCL as a waste product of sodium bicarbonate production. HCL has a pH of 1 and is highly toxic to the body and the cause of indigestion, acid reflux, ulcers and cancer. In fact HCL is in all pharmaceuticals and most dietary nutritional supplements.

d) When large amounts of acids, including HCL, enter the stomach from a rich animal protein or dairy product meal, such as meat and cheese, acid is withdrawn from the acid-base household. The organism would die if the resulting alkalosis – or NaHCO3 (base flood) or base surplus – created by the stomach was not taken up by the alkalophile glands (pancreas, gallbladder, Lieberkuhn glands in the liver and the Brunner glands between the pylorus and the junctions of the bile and pancreatic ducts), that need these quick bases in order to build up their strong sodium bicarbonate secretions. These glands and organs, once again are the stomach, pancreas, Brunner’s glands (between the pylorus and the junctions of the bile and pancreatic ducts, Lieberkuhn’s glands in the liver and its bile with its strong acid binding capabilities which it has to release on the highly acidic meat and cheese to buffer its strong acids of nitric, sulphuric, phosphoric, uric and lactic acids.

e) When a rich animal protein and dairy product meal is ingested, the stomach begins to manufacture and secrete sodium bicarbonate (NHCO3) to alkalize the acids from the food ingested. This causes a loss in the alkaline reserves and an increase in acid and/or HCL found in the gastric pits of the stomach. These acids and/or HCL are taken up by the blood which lowers blood plasma pH. The blood eliminates this increase in gastrointestinal acid by throwing it off into the Pishinger’s spaces or what recent scientist are calling the Interstitium pictured below.

70991630_2398770980389808_942082419039666176_o

 

f) The space enclosed by these finer and finer fibers is called the Pishinger’s space, or the spaces of the interstitium that contains the fluids that bath and feed each and every cell while carrying away the acidic waste from those same cells. There is no mention of this organ in American physiology or medical school text books. There is mention of the space but not of any organ that stores acids from metabolism, respiration, environment and diet, like the kidney. I call this organ the “pre-kidney” because it stores metabolic respiratory, environmental and gastrointestinal acids until they can be buffered and eliminated via the skin, urinary tract, or bowels.

g) After a rich animal protein or dairy product meal, the urine pH becomes alkaline.The ingestion of meat and cheese causes a reaction in acidic fashion in the organism by the production of sulfuric, phosphoric, nitric, uric, lactic, acetylaldehyde and ethanol acids, respectively, but also through the formation and excretion of base in the urine. Therefore eating meat and cheese causes a double loss of bases leading to tissue acidosis and eventual disease, especially inflammation and degenerative diseases.

h) During heavy exercise, if the the resulting lactic acid was not adsorbed by the collagen fibers, the specific acid catchers of the body, the organism would die. The total collection of these fibers is the largest organ of the body called SCHADE, the colloidal connective tissue organ or the interstitium. NO liquid exchange occurs between the blood and the parenchyma cells, or in reverse, unless it passes through this connective tissue organ or the interstitium. This organ connects and holds everything in our bodies in place. This organ is composed of ligaments, tendons, sinew, and the finer fibers that become the scaffolding that holds every single cell in our bodies in place. When acids are stored in this organ (just discovered by American science in 2018. Dr. Robert O. Young with Dr. Galina Migalko published their pH findings of the blood, interstitial fluids of the Interstitium and the intracellular fluids in 2015. Their publication is pictured below), which includes the muscles, inflammation and pain develop. The production of lactic acid is increased with the ingestion of milk, cheese, yogurt, butter and especially ice cream.

-699783239

 

That is why I have stated for years, “acid is pain and pain is acid.” You cannot have one without the other. This is the beginning of latent tissue acidosis leading to irritation, inflammation and degeneration of the cells, tissues and organs.

i) The more acidity created from eating meat, cheese, milk or ice cream the more gastrointestinal acids are adsorbed into the the collagen fibers to be neutralized and the less sodium bicarbonate or NaHCO3 that is taken up by the alkalophile glands. The larger the potential difference between the adsorbed acids and the amount of NaHCO3 generated with each meal, the more or less alkaline are the alkalophile glands like the pancreas, gallbladder, pylorus glands, blood, etc. The acid binding power of the connective tissue, the blood, and the alkalophile glands depends on its alkali reserve, which can be determined through blood, urine, and saliva pH testing, including live and dried blood analysis. (Currently we are the only two scientist in the World that are doing non-invasive testing of the stomach, blood, interstitium and intracellular fluid pH with results in less than 15 minutes) The saliva pH is an indication of alkali reserves in the alkalophile glands and the urine pH is an indication of the pH of the fluids that surround the cells or the Pishinger’s space.

Screen Shot 2019-10-28 at 10.38.32 AM.png

 

j) The iso-structure of the blood maintains the pH of the blood by pushing off gastrointestinal or metabolic acids into the connective tissue or the Pishinger’s space or the Interstitium. The blood gives to the urine the same amount of acid that it receives from the tissues and liver so it can retain its iso-form. A base deficiency is always related to the deterioration of the deposit ability of the connective tissues or the Pishinger’s space or interstitial fluid spaces. As long as the iso-structure of the blood is maintained, the urine – which originates from the blood – remains a faithful reflected image of the acid-base regulation, not of the blood, but of the tissues. The urine therefore is an excretion product of the connective tissues or the interstitium, not the blood. So when you are testing the pH of your urine, you are testing the pH of the tissues or the interstitial fluids of the Interstitium.

k) A latent “acidosis” is the condition that exists when there are not enough bases in the alkalophile glands because they have been used up in the process of neutralizing the acids adsorbed to the collagen fibers. This leads to compensated “acidosis.” This means the blood pH has not changed but other body systems have changed. This can then lead to decompensated “acidosis” where the alkaline reserves of the blood are used up and the pH of the blood is altered. Decompensated “acidosis” can be determined by testing the blood pH, urine pH and the saliva pH. The decrease in the alkaline reserves in the body occurs because of hyper-proteinization, (eating Meat and Cheese!)or too much protein, and hyper-carbonization, or too much sugar. This is why 80 to 90 year old folks are all shrunk up and look like prunes. They have very little or no alkaline reserves in their alkalophile glands. When all the alkaline minerals are gone, so are you and your battery runs down. The charge of your cellular battery can be measured by testing the ORP or the oxidative reduction potential of the blood, urine or saliva using an ORP meter. As you become more acidic this energy potential or ORP increases.

l) If there is not enough base left over after meat and cheese or surgary meal, or enough base to neutralize and clear the acids stored in the connective tissues or interstitium, a relative base deficiency develops which leads to latent tissue acidosis.When this happens the liver and pancreas are deficient of adequate alkaline juices to ensure proper alkalization of the food in your stomach and small intestine.

m) Digestion or alkalization cannot proceed without enough of these alkaline juices for the liver and pancreas, etc., and so the stomach has to produce more acid in order to make enough base, ad nauseam, and one can develop indigestion, nausea, acid reflux, GERD, ulcers, esophageal cancer and stomach cancer. All of these symptoms are not the result of too much acid or HCL in the stomach. On the contrary, it is the result of too little base in the form of sodium bicarbonate!

n) Therefore the stomach is NOT an organ of digestion as currently taught in ALL biology and medical texts, BUT an organ of contribution or deposit. It’s function is to deposit alkaline juices to the stomach to alkalize the food and to the blood to carry to the alklophile glands!!!!

o) There is a daily rhythm to this acid base ebb and flow of the fluids of the body. The stored acids are mobilized from the connective tissues and Pishinger’s spaces or the spaces of the interstitium while we sleep.

These acids reach their maximum (base tide) concentration in this fluid, and thereby the urine (around 2 a.m. is the most acidic). The acid content of the urine directly reflects the acid content of the fluid in the Pishinger’s spaces, the interstitial fluid compartments of the body. On the other hand, the Pishinger’s spaces become most alkaline around 2 p.m. (the base flood) as then the most sodium bicarbonate (NaHCO3) is being generated by the cover cells of the stomach to alkalize the food and drink we have ingested.

p) If your urine is not alkaline by 2 p.m. you are definitely in an ACIDIC condition and lacking in alkaline reserves. The pH of the urine should run between 6.8 and 8.4 but ideally 7.2 or greater.

q) After a high protein meal or meat or cheese, the free acids formed such as sulfuric, phosphoric, uric, and nitric acids stick to the collagen fibers to remove them from the blood and protect the delicate pH of the blood at 7.365. The H+ or proton ions from these acids are neutralized by the next base flood, the sodium bicarbonate produced after the meal. The H+ or proton ion combines with the carbonate or HCO3, converts to carbonic acid, H2CO3, which converts to CO2 and H2O. The sulfuric and other acids from proteins are neutralized as follows where the HR represents any acid with the R as its acid radical (SO4, PO4, or NO3) HR + NaHCO3 <=> H2O + NaR (Ca, Mg, K)+ CO2.

r) Medical doctors are not taught the above science in medical school and therefore do not understand the complex chemistry between the stomach, blood and interstitium or even recognize the effects of an acidic lifestyle and diet leading to latent tissue acidosis in the largest organ of the body called the Interstitium. They understand and recognize compensated acidosis and decompensated acidosis in the blood but do not know about or even understand a single thing about the Interstitium. In compensated acidosis, breathing increases in order to blow off more carbonic acid which decreases PCO2 because of the lowered carbonate or HCO3. When the breathing rate can no longer get any faster and when the kidneys can no longer increase its’ function to keep up with the acid load, then the blood pH starts to change from a pH of 7.365 to 7.3 then to 7.2. At a blood pH of 6.95 the heart relaxes and the client goes into a coma or dies.

s) Metabolism of a normal adult diet results in the generation of 50 to 100 meq of H+ or proton per day, which must be excreted if the urine acid-base balance is to be maintained. A meq is a milliequivalent which is an expression of concentration of substance per liter of solution, calculated by dividing the concentration in milligrams per 100 milliliters by the molecular weight. This process involves two basis steps; 1) the reabsorption of the filtered sodium bicarbonate or NaHCO3 and, 2) excretion of the 50 to 100 meq of H+ or proton produced each day by the formation of titratable acidity and NH4+ or ammonium. Both steps involve H+ or proton secretion from the cells of the kidney into the urine.

t) Sodium bicarbonate (NaHCO3) must be reabsorbed into the blood stream, since the loss of NaHCO3 will increase the net acid load and lower the plasma NaHCO3 concentration. The loss of NaHCO3 in the urine is equivalent to the addition of H+ to the body since both are derived from the dissociation of H2CO3 or carbonic acid.

u) The biochemistry is: CO2 + H2O = H2CO3 = HCO3 + H+. The normal subject must reabsorb 4300 meq of NaHCO3 each day! The secreted H+ or proton ions are generated within the kidney cells from the dissociation of H2O or water. This process also results in the equimolar production OH- or hydroxyl ions. The OH- ions bind to the active zinc-containing site of the intracellular carbonic anhydrase; they then combine with CO2 to form HCO3- ions which are released back into the kidney cells and returned to the systemic circulation. Second, the dietary acid load is excreted by the secretion of H+ or proton ions from the kidney cells into the urine. These H+ or proton ions can do one of two things: the H+ or proton ions can be combined with the urinary buffers, particularly HPO4, in a process called titratable acidity (The biochemistry is: H+ + HPO4 = H2PO4), or the phosphate buffering system or the H+ or proton ions can combine with ammonia (NH3) to form ammonium as follows: NH3 + H+ = NH4.

v) This ammonia is trapped and concentrated in the kidney as ammonium which is then excreted in the urine.

w) In response to acid load, 36% of the H+ or proton goes intracellular in exchange for the release of Na+ (sodium) into the blood stream. 15% of the acid goes intracellular in exchange for K+ (potassium) – common in diabetics. 6% of the H+ or proton or acid goes directly into the cell to be buffered by intracellular processes. 43% is buffered by the interstitium as NaHCO3- or sodium bicarbonate combining with H+ or proton to form H2CO3 or carbonic acid which breaks down to CO2 or carbon dioxide to be released by the lungs. 10% of CO2 or carbon dioxide is excreted through the lungs and 90% is used by the body to reabsorb alkaline minerals and make sodium bicarbonate for buffering gastrointestinal, respiratory, enivronmenta and metabolic acids.

The biochemistry is: CO2 + H2O = H2CO3 = HCO3 + H+.

You can order the following book on sodium and potassium bicarbonate at: http://www.phoreveryoung.com or https://www.amazon.com/gp/product/B01JLHJ1Y8/ref=dbs_a_def_rwt_hsch_vapi_taft_p3_i9

0-17

x) Of all the ways the body can buffer metabolic and dietary acids, the excretion of protein (the eating of meat and cheese) generated acid residues is the only process that does not add sodium bicarbonate back into blood circulation. This creates a loss of bases which is the forerunner of all sickness and disease. In the long run, the only way to replace these lost bases is by eating more alkaline electron-rich green foods and long-chain polyunsaturated fats. Eating meat and cheese is definitely hazardous to your health. That is why I say, “a cucumber a day keeps the doctor away while eating meat, cheese and even an apple creates more excess acid in the colloidal connective tissues of the Schade or the Interstitium, leading to latent tissue acidosis and then sickness, disease and finally death.

y) With over 30 years of research and testing over 500,000 samples of blood and over 1,000,000 samples of urine and saliva I have come to the conclusion that the Human Body is an acid producing organism by function – yet, it is an alkaline organism by design. Eating animal protein, especially meat and cheese and sugar from any source are deadly acidic choices – unless you interested in becoming sick, tired and fat over time.

AAEAAQAAAAAAAAOhAAAAJGY3MDdmYTk3LTA1YmQtNDRiMy05MmM1LWY5YjQ3M2VmMTMxOQ

z) Bottom line – the pH Miracle Lifestyle and Diet is a program that focuses on the foundational principal that the body is alkaline by design and yet acidic by function. These are my two greatest discoveries. This make this program the ultimate program for preventing and reversing aging and the onset of sickness and dis-ease. I would say that the pH Miracle Lifestyle and Diet is the diet for a longer healthier life free from all sickness and disease. That is why you are seeing a slew of celebrities (Harry and Meghan, Tom Brady, Rhianna, Elle Macpherson, Gwyneth Paltrow, David Beckham, NeNe, Tony Robbins, just to name a few) can attest to the benefits of a pH Miracle alkaline lifestyle and diet and the drinking of alkaline water for improving the quality of their skin, hair and body and to avert over-acidity which often leads to breakouts of the skin and many other health challenges.

Harry and Meghan live an alkaline lifestyle and diet

31659213_2051805291753047_2811681146117554176_o

Tom Brady is an avid supporter of the alkaline lifestyle and diet and states it is keeping in the game playing the best football of his life!

images-11

David Beckham is a follower of the alkaline lifestyle and diet

download-2

Ellie Macpherson drinks her green drink and tests her pH daily at the age of 54 enjoying extraordinary health and fitness

Screen Shot 2018-07-18 at 8.50.55 AM

Tony Robbins has been teaching Dr. Young’s pH Miracle Lifestyle and Diet to Millions Around the World for Over 20 Years!

Tony-robbins

Gwyneth Paltrow has been following the pH Miracle Lifestyle and Diet for over 10 years and attributes her health, energy, vitality, fitness, and anti-aging benefits to this lifestyle and diet.

0-5

Rhianna attributes her glowing skin to the alkaline lifestyle and diet.

0-16

Please remember this very important truth, hydrochloric acid in the stomach is not the cause of digestion but the result of alkalization. Start alkalizing today and begin improving the quality and quantity of your life today.

The Break-Through Research of Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner

My research has linked acidity to every sickness and disease, including enervation, irritation, catarrh, inflammation, induration, ulceration and degeneration. People do not die from disease they die from the inability to maintain the alkaline design of their body. The key to living a long and healthy life is managing the alkaline design of the body. For example pain equals acid and acid equals pain. You cannot have pain with acid. It is that simple! Remove the acid and you remove the pain.

The following are 20 suggestions on how to manage the alkaline design of your body and to increase your energy, vitality and quantity and quantity of life which is in your complete control! YOU determine YOUR Destiny!

20 Suggestions for Maintaining the Alkaline Design of YOUR Body for a Longer and Healthier Life

1. Start your day with a large glass of 9.5 alkaline water with the juice of a whole, freshly-squeezed lemon. While lemons are wrongly considered acidic, they are NOT! They are loaded with sodium bicarbonate which means they contribute to your alkaline reserves and protect the blood and interstitium from acid rain.

Be Alkaline and be healthy and loving

Get weekly alkaline tips of the day for leading a long and healthy and compassionate alkaline life when you sign-up as a member of our pH Miracle Fan Club on our facebook page at: https://www.facebook.com/groups/50864627953/

0-8

 2. Better yet, invest in a water filtration system that alkalinizes the water and increases the pH of the water to a 9.5 or greater. Pure water found in nature, which is hard to come by now thanks to acid rain, is quite alkaline. If you’re already drinking purified water, you can also purchase water alkalinizing drops to add to your water bottle and to raise the pH of your water to pH or 9.5 or greater. Here is the link to purchase alkaline pH drops for you water: https://store.phoreveryoung.com/collections/supplements/products/activator-by-ph-miracle-2-fl-oz-59-14ml

3. Eat a large green vegetable salad tossed in alkalizing lemon juice and olive oil. Greens are among the best sources of alkaline minerals like calcium and are high in chlorophyll for building hemoglobin and red blood cell counts.

4. Drink raw organic almond milk. Almonds are packed with natural alkaline minerals like calcium, magnesium and potassium which can help to balance out acidity while buffering another acid called glucose or blood sugar.

5. Drink an Avocado smoothie daily. Using a Vita-mix blender you can blend an avocado with spinach greens, cucumber, celery, ginger and almond milk for an incredible alkalizing and energizing green shake.

Screen Shot 2018-08-10 at 8.33.28 PM

6. Add green powder like wheat grass, barley grass, moringa grass or other greens to your daily diet since these foods that are highly alkalizing and energizing. It’s easy to throw a tablespoon of these greens into your Avocado based almond milk smoothie. To order the best green powder in the World go to: https://store.phoreveryoung.com/collections/supplements/products/innerlight-supergreens

Screen Shot 2018-07-13 at 4.39.47 AM

 

7. Take a brisk walk, bicycle ride, swim, rebound or some other exercise for at least 30 minutes everyday. Exercise helps move acidic waste products out of the interstitium and through the pores of the skin via perspiration.

8. Breathe deeply. Ideally, choose a spot that has fresh, oxygen-rich air. And, sorry, air filled with Febreze, Glade and all the other so-called “air fresheners,” is not what I’m talking about here. Take a deep breath in through your nose and then switch to breathing through your mouth without letting go of your first inhalation through your nose.

 

9. Go for Meatless and Eggless Mondays. Better yet, opt for meat-free Tuesdays, Wednesdays and other days throughout the week. During the chewing of meat, acid residues like uric acid, nitric acid, sulphuric acid and phosphoric acid residues are left behind for the stomach to address. There is zero health benefits from eating the flesh of another living being. All flesh is acidic and causes a double-loss of alkalinity in the blood and interstitium.

638b3-542489_375681369153778_210032119_n

10. Skip the sugar-laden soda and drink some iJuice Wheat Grass Juice.(www.ijuicenow.com) Sugar is one of the most acidic foods we consume. Sugar is a waste product of metabolism and fermentation. You need over 30 glasses of alkaline water at a pH of 8.4 just to neutralize the acidity (sugar and carbonic acid) of ONE can or bottle of soda.

11. Skip the artificially-sweetened diet beverages and other diet products. They contain artificial sweeteners like aspartame (now known as NeoTame), sucralose (also known as Splenda) or saccharin (also known as SugarTwin) and they all cause body warming and acid rain inside your body.

12. Add more green fruit and vegetables to your diet. No, fried potatoes don’t count, including sweet potatoes. Asparagus, green peppers, green string beans, kale, spinach, beet tops, carrot tops, wheat grass, barley grass, broccoli, cucumber, avocado, and lime and other green fruit and vegetables are also excellent choices for supporting the alkaline design of the body.

Unknown-6

13. Instead of slathering your vegetables in acid-forming butter, drizzle alkaline flaxseed oil, hemp seed oil, and/or green olive oil over them.

14. Sprout it out. Add more sprouts to your daily diet like bean sprouts, sunflower seed sprouts and broccoli sprouts. They are extremely alkalizing and supercharged with nutrients and energy-boosting electrons.

9_S_FTL_Blog-min

15. Skip ALL desserts or reserve them as occasional treats instead of daily habits. Sugar consumption has been linked to a whole host of health problems and is best minimized or eliminated. If you are in body warming then removing all acidic foods and drinks are a must.

16. Avoid all alcoholic beverages or so-called nutritional supplements that contain alcohol. Alcohol is a devastating acid that causes pancreatic and liver cancer.

17, Avoid corn and peanuts because they are loaded with bacteria, yeast and mold and the cancer causing acid lactic acid.

18. No acidic beverages like coffee, black or green tea or chocolate. They all contain food acids that robs your body of its alkaline reserves causing many diseases, including cancer.

images-30

19. Stay far away from vinegar. Vinegar is pure acid and steals years off your life! Do not believe the so-called health experts to state the vinegar is good for digestion. Remember this very important point. There is only one instrument in the human body that can digest or breakdown food and the is your teeth. When you pour vinegar into your body all you have done is poison yourself. The stomach has to rob alkalinity from the blood, interstitium, organs and glands to buffer this highly toxic chemical setting the stage for enervation, inflammation, induration, ulceration , degeneration and finally death. Vinegar is death in a bottle.

20. Test your urine and saliva and drink pHour Salts every morning. Your ideal pH of your urine and saliva should be at least 7.300. If your pH is lower than 7.300 take a scoop of pHour salts in a small glass of alkaline water. Ideally, you should drink a glass of phour salts which contains sodium bicarbonate, potassium bicarbonate, magnesium chloride and calcium at least 3 times daily. To order pHour salts go to: https://store.phoreveryoung.com/collections/supplements/products/phour-salts-per-case

You can also order saliva and urine testing strips at the following link: https://store.phoreveryoung.com/products/phydrion-strips-5-5-8-0?variant=2085775876

Screen Shot 2018-03-11 at 8.32.06 AM

 

To learn more about the work, research and discoveries of Robert O Young go to the following websites: http://www.drrobertyoung.com, http://www.phmiracleretreat.com, http://www.ijuicenow.com, http://www.innerlightblue.com and http://www.phmiracleproducts.com

To learn more read The pH Miracle, The pH Miracle revised and updated, The pH Miracle for Diabetes, The pH Miracle for Weight Loss, The pH Miracle for Cancer and Sick and Tired, just to name a few of Robert O Young’s published books. To order any of these books go to: http://www.phoreveryoung.com

0-69
Dr Galina Migalko and I will be key note speakers sharing our research and findings at the 3rd World Congress on Advanced Cancer Science and Therapy on October 15th and 16th in Osaka, Japan.  If you would like to attend our lecture on our break-through science you can email: phmiraclelife@gmail.com
Screen Shot 2018-06-28 at 10.59.57 AM
Our Next pH Miracle Event will be from November 18th to December 2nd – To learn more email us at: phmiracleliving@aol.com
Screen Shot 2018-05-19 at 1.55.10 AM

Will Soy Prevent or Reverse Disease?



Will Eating and/or Drinking Soy Prevent or Reverse Dis-ease or So-called Disease?

Cancer is a group of dis-eases characterized by the uncontrolled fermentation and degeneration of body cells. Over 10 million Americans today are cancer survivors, and about 1.4 million Americans are expected to be diagnosed each year.1

“Diet plays an important role in the prevention and treatment of ALL cancerous conditions, and soy protein is one of the leading anti-acid or alkalizing and therefore anti-carcinogenic foods being studied,” stated Dr. Robert O. Young, Director of Research at the pH Miracle Living Center.

SOY FOODS & CANCER

There has been much focus during the past 15 years on the anticancer effects of soy foods.2There are several presumed chemopreventive agents in the soy bean,6 but the isoflavones have received the most attention.3 A particular interest lies in the role of soy foods and isoflavones in reducing the risk of breast and prostate cancer.2

SOY & BREAST CANCER

Data modestly supports the hypothesis that soy food intake may reduce the incidence of breast cancer. A recently published analysis found the relative risk for breast cancer was 95 percent when comparing high- vs. low-soy consumers.5 However, many of the case-control and prospective studies included in this analysis were of poor quality.6

Rodent studies have generally shown that isoflavones, or soy protein, inhibit chemically induced mammary tumors when given prior to tumor initiation7-9, although there are a number of exceptions.10-12 Interestingly, the chemopreventive effects of isoflavones appear to be affected by the background dietary choices.

When the isoflavone genistein was added to the semi-purified diet, chemically induced rodent mammary tumors were not inhibited, but when added to the regular chow diet, tumor development was suppressed by approximately 50 percent.13 This suggests that animal research, which most commonly uses semi-purified diets, may actually underestimate the potential anticarcinogenic effects of soy and other foods.

Soy & Markers of Breast Cancer

In contrast to the animal and epidemiologic data, there is little clinical evidence that soy or isoflavones favorably affect markers of breast cancer risk including breast tissue density,14, 15serum estrogen levels,16, 17 and breast cell proliferation.18 There is limited evidence that estrogen metabolism is favorably affected19 and that menstrual cycle length is increased (which decreases cancer risk).16

Nevertheless, there remains considerable enthusiasm for the possibility that soy food intake contributes to the low breast cancer rate in Japan.

Early Intake of Soy May Reduce Breast Risk

There is both epidemiologic 20-22 and animal 23, 24 data in support of the hypothesis that early soy intake reduces later risk of developing breast cancer. This hypothesis is consistent with mounting evidence that early life influences — parity, lactation, age at menses, birth weight, etc. — impact risk of developing breast cancer.25-36 Studies of migrants suggest that the first 20 years of life have an especially profound impact on risk.36-38 The epidemiologic data suggest just one to two servings of soy foods is protective.

Breaking News – Soy Breast Cancer Study

Soy Breast Cancer Study Holds Promise, But Calls for Further Research

For more than 15 years, soy foods have been actively investigated for their possible role in reducing breast cancer risk. Initial enthusiasm about this hypothesis was based on several observations. These include the low breast cancer rates in Japan, early animal research indicating that soy beans in rodent diets reduced mammary tumor development and evidence suggesting that the isoflavones (phytoestrogens) in soy foods may exert anti-estrogenic effects.

However, establishing a relationship between cancer risk and diet – especially specific foods – is much more difficult than establishing such links in the case of other chronic diseases such as coronary heart disease. This is because there are few well-established non-invasive indicators of cancer risk, and studies are very rarely conducted for long enough to measure actual differences in tumor incidence. Consequently, it is difficult to claim with confidence whether a particular intervention increases or decreases the chances of developing cancer.

Epidemiologic research is a useful mode of investigation for exploring a relationship between diet and cancer. Epidemiology is the study of the patterns, causes, and control of disease in groups of people. There are two primary types of epidemiologic studies, case-control and prospective studies. In case-control studies, scientists compare people with cancer to those without in hopes of identifying characteristics such as lifestyle or diet that are more common to one group than the other. In prospective studies, scientists first evaluate the characteristics of a large group of healthy people, then follow those subjects for many years in hopes of identifying whether certain factors are more common to those who develop cancer than to those who don’t. Generally, prospective studies are considered more credible than case-control studies. It is important to recognize, however, that epidemiologic studies cannot establish cause and effect relationships. Only clinical trials can do that. But epidemiologic studies are often used as a basis for clinical research.

To evaluate the relationship between soy intake and breast cancer risk, Bruce Trock and colleagues from the Johns Hopkins School of Medicine and Georgetown University conducted a meta-analysis of epidemiologic studies. A meta-analysis is the statistical analysis of a large collection of results from individual studies for the purpose of integrating the findings. This particular analysis included 12 case-control studies and 6 prospective studies. The major finding of this analysis was that when all women (Asian and non-Asian, pre- and postmenopausal) were considered, soy intake was associated with a 14% reduction in breast cancer risk. That is, women consuming higher quantities of soy were 14% less likely to develop breast cancer than women who consumed relatively little soy. However, subgroup analysis revealed that soy was more protective against pre- compared to postmenopausal breast cancer, and was protective in studies involving non-Asian women but not Asian women.

The analysis by Trock and colleagues provides modest support for the notion that soy may protect against breast cancer. A 14% reduction is certainly noteworthy, but for several reasons the study results should be interpreted with caution.

First, in many studies, soy intake was not actually quantified. Rather, it was estimated based on the urinary excretion of isoflavones. Because urinary isoflavone excretion varies so much from person to person, it provides only a rough approximation of soy intake. Furthermore, although soy was found to be protective in studies involving non-Asian women, the intake of soy by the women in these studies was quite low. There is some doubt as to whether such low intakes are sufficient to exert biological effects. Since soy foods are still consumed by only a minority of people in non-Asian countries – and are often favored by especially health-conscious individuals – we must consider the possibility that the perceived cancer-protective effects of soy may result from an overall healthy lifestyle, rather than soy consumption per se. Although the researchers employed statistical techniques to try to separate the effects of soy from other factors common to people who eat soy, this is very difficult to do.

While some evidence, including the new analysis by Trock and colleagues, suggests soy foods may reduce breast cancer risk, no conclusions can be made at this time. Nevertheless, because soy foods provide excellent nutrition, they can play an important role in an overall healthy diet, regardless of their possible relationship to breast cancer protection.

SOY & PROSTATE CANCER

The soy bean isoflavone genistein inhibits the growth of both androgen-dependent39-42 and androgen-independent39, 42-45 prostate cancerous cells, depending on the level of soy doses administered. In addition, genistein inhibits the invasive capacity of prostate cancerous cells 42and enhances the ability of radiation to kill these cells.46 However, the concentration of genistein required to exert these effects is higher than the serum isoflavone levels of people who eat soy foods.47-49 Nevertheless, several observations suggest these effects are biologically relevant.39,44-49

Regional Diets Can Impact Prostate Cancer

In Japan, although many men have prostate cancer, few die of this dis-ease. This is because the small tumors often referred to as latent prostate cancer, not uncommon to Japanese men, rarely progress to the more advanced form of this disease.51, 52 Isoflavones in combination with tea extracts were shown to reduce tumor growth in mice more effectively than either agent alone.9

In Asia, and especially in Japan, where prostate cancer mortality rates are low, both soy foods and tea are important components of their diet. There are likely several factors that contribute to this clinical situation in Japanese men and according to the International Prostate Health Council, and isoflavone intake from soy foods may be one.53

There has been limited epidemiologic investigation of the relationship between soy intake and prostate cancer. These studies have produced mixed results but can be said to be consistent with the hypothesis that soy intake reduces prostate cancer risk.

A recent analysis of 10 epidemiologic studies found that soy intake was associated with a one-third reduction in prostate cancer risk.5 However, many of the epidemiologic studies involved a small number of cases54, 55 and/or did not comprehensively evaluate soy food intake. However, a recent comprehensive Japanese case-control study found that when comparing the highest with the lowest soy food intake cases, risk was reduced by nearly 50 percent.56

Soy May Help Treat Existing Prostate Cancer

Data suggests that soy foods may be useful in the treatment of existing prostate cancer, but this remains speculative. A study of 11 trials, three involving healthy subjects57-59 and eight involving prostate cancer patients,60-67 examined the effects of isoflavones on PSA levels. No benefits were noted in healthy subjects, but among the cancer patients one-half noted favorable effects.68Recent intervention data demonstrate that reducing prostate cancer risk is not dependent upon reductions in PSA levels.69

References

  1. American Cancer Society. Cancer Facts and Figures; 2005.
  2. Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of thein vitro and in vivo data. Nutr Cancer 1994;21:113-131.
  3. Messina M, Barnes S. The role of soy products in reducing risk of cancer. J Natl Cancer Inst 1991;83:541-546.
  4. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest 2003;21:744-757.
  5. The health claim petition: soy protein and the reduced risk of certain cancers. 2004.(Accessed at http://www.fda.gov/ohrms/dockets/dockets/04q0151/04q0151.htm.)
  6. Yan L, Spitznagel E. A meta-analysis of soy foods and risk of breast cancer in women. Int J Cancer Prevention 2005;1:281-293.
  7. Messina MJ, Loprinzi CL. Soy for breast cancer survivors: a critical review of the literature.J Nutr 2001;131:3095S-3108S.
  8. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 2004;91:513-531.
  9. Zhou JR, Yu L, Mai Z, Blackburn GL. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer 2004;108:8-14.
  10. Cohen LA, Zhao Z, Pittman B, Scimeca JA. Effect of intact and isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. Carcinogenesis 2000;21:929-935.
  11. Day JK, Besch-Williford C, McMann TR, Hufford MG, Lubahn DB, MacDonald RS. Dietary genistein increased DMBA-induced mammary adenocarcinoma in wild-type, but not ER alpha KO, mice. Nutr Cancer 2001;39:226-232.
  12. Thomsen AR, Mortensen A, Breinholt VM, Lindecrona RH, Penalvo JL, Sorensen IK. Influence of Prevastein(R), an Isoflavone-Rich Soy Product, on Mammary Gland Development and Tumorigenesis in Tg.NK (MMTV/c-neu) Mice. Nutr Cancer 2005;52:176-188.
  13. Kim H, Hall P, Smith M, Kirk M, Prasain JK, Barnes S, Grubbs C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J Nutr 2004;134:3445S-3452S.
  14. Atkinson C, Warren RM, Sala E, Dowsett M, Dunning AM, Healey CS, Runswick S, Day NE, Bingham SA. Red-clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial. Breast Cancer Res 2004;6:R170-179.
  15. Maskarinec G, Takata Y, Franke AA, Williams AE, Murphy SP. A 2-year soy intervention in premenopausal women does not change mammographic densities. J Nutr2004;134:3089-3094.
  16. Kurzer MS. Hormonal effects of soy in premenopausal women and men. J Nutr2002;132:570S-573S.
  17. Maskarinec G, Franke AA, Williams AE, Hebshi S, Oshiro C, Murphy S, Stanczyk FZ. Effects of a 2-year randomized soy intervention on sex hormone levels in premenopausal women. Cancer Epidemiol Biomarkers Prev 2004;13:1736-1744.
  18. Palomares MR, Hopper L, Goldstein L, Lehman CD, Storer BE, Gralow JR. Effect of soy isoflavones on breast proliferation in postmenopausal breast cancer survivors. Breast Cancer Res Treatment 2004;88 (Suppl 1):4002.
  19. Brown BD, Thomas W, Hutchins A, Martini MC, Slavin JL. Types of dietary fat and soy minimally affect hormones and biomarkers associated with breast cancer risk in premenopausal women. Nutr Cancer 2002;43:22-30.
  20. Shu XO, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao YT, Zheng W. Soy food Intake during Adolescence and Subsequent Risk of Breast Cancer among Chinese Women.Cancer Epidemiol Biomarkers Prev 2001;10:483-488.
  21. Wu AH, Wan P, Hankin J, Tseng CC, Yu MC, Pike MC. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 2002;23:1491-1496.
  22. Korde L, Fears T, Wu A, West D, Pike M, Hoover R, Ziegler R. Adolescent and childhood soy intake and breast cancer risk in Asian-American women. Breast Cancer Res Treat2005;88 (suppl 1):S149.
  23. Lamartiniere CA, Zhao YX, Fritz WA. Genistein: mammary cancer chemoprevention, in vivo mechanisms of action, potential for toxicity and bioavailability in rats. J Women’s Cancer 2000;2:11-19.
  24. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Skaar T, Russo I, Clarke R. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer1999;80:1682-1688.
  25. Russo J, Lareef H, Tahin Q, Russo IH. Pathways of carcinogenesis and prevention in the human breast. Eur J Cancer 2002;38 Suppl 6:S31-32.
  26. Hamilton AS, Mack TM. Puberty and genetic susceptibility to breast cancer in a case-control study in twins. N Engl J Med 2003;348:2313-2322.
  27. Elias SG, Peeters PH, Grobbee DE, van Noord PA. Breast cancer risk after caloric restriction during the 1944-1945 Dutch famine. J Natl Cancer Inst 2004;96:539-546.
  28. Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA2004;291:1226-1230.
  29. Lee SY, Kim MT, Kim SW, Song MS, Yoon SJ. Effect of lifetime lactation on breast cancer risk: a Korean women’s cohort study. Int J Cancer 2003;105:390-393.
  30. Leon DA, Carpenter LM, Broeders MJ, Gunnarskog J, Murphy MF. Breast cancer in Swedish women before age 50: evidence of a dual effect of completed pregnancy. Cancer Causes Control 1995;6:283-291.
  31. Zheng T, Duan L, Liu Y, Zhang B, Wang Y, Chen Y, Zhang Y, Owens PH. Lactation reduces breast cancer risk in Shandong Province, China. Am J Epidemiol 2000;152:1129-1135.
  32. Zheng T, Holford TR, Mayne ST, Owens PH, Zhang Y, Zhang B, Boyle P, Zahm SH. Lactation and breast cancer risk: a case-control study in Connecticut. Br J Cancer2001;84:1472-1476.
  33. Vatten L. Can prenatal factors influence future breast cancer risk? Lancet 1996;348:1531.
  34. Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ, Colditz GA, Hankinson SE, Speizer FE, Willett WC. Birthweight as a risk factor for breast cancer.Lancet 1996;348:1542-1546.
  35. Freudenheim JL, Marshall JR, Vena JE, Moysich KB, Muti P, Laughlin R, Nemoto T, Graham S. Lactation history and breast cancer risk. Am J Epidemiol 1997;146:932-938.
  36. Hemminki K, Li X. Cancer risks in second-generation immigrants to Sweden. Int J Cancer 2002;99:229-237.
  37. Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 1991;63:963-966.
  38. Hemminki K, Li X, Czene K. Cancer risks in first-generation immigrants to Sweden. Int J Cancer 2002;99:218-228.
  39. Peterson G, Barnes S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation.Prostate 1993;22:335-345.
  40. Onozawa M, Fukuda K, Ohtani M, Akaza H, Sugimura T, Wakabayashi K. Effects of soy bean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. Jpn J Clin Oncol 1998;28:360-363.
  41. Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S, Hursting SD. Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 2000;29:92-102.
  42. Santibanez JF, Navarro A, Martinez J. Genistein inhibits proliferation and in vitro invasive potential of human prostatic cancer cell lines. Anticancer Res 1997;17:1199-1204.
  43. Naik HR, Lehr JE, Pienta KJ. An in vitro and in vivo study of antitumor effects of genistein on hormone refractory prostate cancer. Anticancer Res 1994;14:2617-2619.
  44. Kyle E, Neckers L, Takimoto C, Curt G, Bergan R. Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol Pharmacol 1997;51:193-200.
  45. Bhatia N, Agarwal R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. Prostate 2001;46:98-107.
  46. Hillman GG, Forman JD, Kucuk O, Yudelev M, Maughan RL, Rubio J, Layer A, Tekyi-Mensah S, Abrams J, Sarkar FH. Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res 2001;7:382-390.
  47. Doerge DR, Chang HC, Churchwell MI, Holder CL. Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab Dispos 2000;28:298-307.
  48. Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr2000;130:1963-1970.
  49. Dalu A, Haskell JF, Coward L, Lamartiniere CA. Genistein, a component of soy, inhibits the expression of the EGF and ErbB2/Neu receptors in the rat dorsolateral prostate. Prostate1998;37:36-43.
  50. Messina M. Emerging evidence on the role of soy in reducing prostate cancer risk. Nutr Rev 2003;61:117-131.
  51. Yatani R, Kusano I, Shiraishi T, Hayashi T, Stemmermann GN. Latent prostatic carcinoma: pathological and epidemiological aspects. Jpn J Clin Oncol 1989;19:319-326.
  52. Shibata A, Whittemore AS, Imai K, Kolonel LN, Wu AH, John EM, Stamey TA, Paffenbarger RS. Serum levels of prostate-specific antigen among Japanese-American and native Japanese men. J Natl Cancer Inst 1997;89:1716-1720.
  53. Griffiths K. Estrogens and prostatic disease. International Prostate Health Council Study Group. Prostate 2000;45:87-100.
  54. Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States) [see comments]. Cancer Causes Control 1998;9:553-557.
  55. Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii.Cancer Res 1989;49:1857-1860.
  56. Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev2003;12:665-668.
  57. Urban D, Irwin W, Kirk M, Markiewicz MA, Myers R, Smith M, Weiss H, Grizzle WE, Barnes S. The Effect of Isolated Soy Protein on Plasma Biomarkers in Elderly Men with Elevated Serum Prostate Specific Antigen. J Urol 2001;165:294-300.
  58. Adams KF, Chen C, Newton KM, Potter JD, Lampe JW. Soy isoflavones do not modulate prostate-specific antigen concentrations in older men in a randomized controlled trial.Cancer Epidemiol Biomarkers Prev 2004;13:644-648.
  59. Jenkins DJ, Kendall CW, D’Costa MA, Jackson CJ, Vidgen E, Singer W, Silverman JA, Koumbridis G, Honey J, Rao AV, Fleshner N, Klotz L. Soy consumption and phytoestrogens: effect on serum prostate specific antigen when blood lipids and oxidized low-density lipoprotein are reduced in hyperlipidemic men. J Urol 2003;169:507-511.
  60. Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, Wood DP, Kucuk O. Soy isoflavones in the treatment of prostate cancer. Nutr Cancer 2003;47:111-117.
  61. Fischer L, Mahoney C, Jeffcoat AR, Koch MA, Thomas BE, Valentine JL, Stinchcombe T, Boan J, Crowell JA, Zeisel SH. Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer2004;48:160-170.
  62. deVere White RW, Hackman RM, Soares SE, Beckett LA, Li Y, Sun B. Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology2004;63:259-263.
  63. Spentzos D, Mantzoros C, Regan MM, Morrissey ME, Duggan S, Flickner-Garvey S, McCormick H, DeWolf W, Balk S, Bubley GJ. Minimal effect of a low-fat/high soy diet for asymptomatic, hormonally naive prostate cancer patients. Clin Cancer Res 2003;9:3282-3287.
  64. Jarred RA, Keikha M, Dowling C, McPherson SJ, Clare AM, Husband AJ, Pedersen JS, Frydenberg M, Risbridger GP. Induction of Apoptosis in Low to Moderate-Grade Human Prostate Carcinoma by Red Clover-derived Dietary Isoflavones. Cancer Epidemiol Biomarkers Prev 2002;11:1689-1696.
  65. Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, Helal M, Salup R, Pow-Sang J. The specific role of isoflavones in reducing prostate cancer risk. Prostate2004;59:141-147.
  66. Dalais FS, Meliala A, Wattanapenpaiboon N, Frydenberg M, Suter DA, Thomson WK, Wahlqvist ML. Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology 2004;64:510-515.
  67. Kranse R, Dagnelie PC, van Kemenade MC, de Jong FH, Blom JH, Tijburg LB, Weststrate JA, Schroder FH. Dietary intervention in prostate cancer patients: PSA response in a randomized double-blind placebo-controlled study. Int J Cancer 2005;113:835-840.
  68. Messina M, Kucuk O, Lampe J. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate specific antigen levels. JAOAC; (accepted).
  69. Meyer F, Galan P, Douville P, Bairati I, Kegle P, Bertrais S, Estaquio C, Hercberg S. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 2005;116:182-186.

5 Highly Acidic Snack Foods That May Cause Stomach, Pancreas, Bowels and Liver Dis-Ease!

 

The top 5 highly acidic snack foods:

1)  Diet Bacon Coke

desktop-1414426772

 

 

 

 

2) Chocolate Baby Ruth Taco

desktop-1414426424

 

 

 

 

 

 

3)  Steak Ruffles Potato Chips

desktop-1414426254

 

 

 

 

 

 

4) The Shrimp Burger

desktop-1414426587

 

 

 

 

 

5)  Steak Doritos

desktop-1414427080

!0 Billion Reasons to NOT EAT MEAT!

Photo

Meat Declared TOO Dangerous/ACIDIC for Human Consumption – Causes Cancer!

Processed Meats Declared too Dangerous/Acidic for Human Consumption

88_frankfurters
The World Cancer Research Fund recently completed a detailed review of 7,000 clinical studies covering links between diet and cancer. Upon conclusion it is evident that processed meats are dangerous for human consumption and consumers should stop buying and eating processed meats.
What are processed meats?Processed meats include bacon, sausage, hot dogs, sandwich meat, packaged ham, pepperoni, salami and nearly all meat found in prepared frozen meals. Processed meats are usually manufactured with a carcinogenic (linked to promote and cause cancer) ingredient known as sodium nitrate. Sodium nitrate is primarily used as a colour fixer by meat companies to make the packaged meats look bright red and fresh. Monosodium glutamate is also added on a regular basis to enhance the savoury flavour.
Sodium Nitrate has been strongly linked to the formation of cancer-causing nitrasamines in the human body, leading to a sharp increase in the risk of cancer for those consuming them. A 2005 Hawaii University study found that eating processed meats increased the risk of pancreatic cancer by 67%, whilst another study found that it increased the risk of colorectal cancer by 50%. These are scary numbers for those consuming processed meats on a regular basis.
Monosodium glutamate (MSG) is a second dangerous chemical found in virtually all processed meat products. MSG is a dangerous excitotoxin linked to neurological disorders such as migraine headaches, Alzheimer’s disease, loss of appetite control, obesity and many other serious health conditions. Manufacturers use MSG to add an addictive savory flavor to dead-tasting processed meat products.
Foods to NEVER eat:
  • Beef jerky
  • Bacon
  • Sausage
  • Pepperoni
  • Hot dogs
  • Sandwich meat
  • Deli slices
  • Ham/Pork
  • Frozen pizzas with meat
  • Canned soups containing meat
  • Frozen meals with meat
  • Ravioli and meat pasta foods
  • Turkey
  • Chicken
  • Beef
…and many more meat products
If its so dangerous to consume why are they allowed to sell it?
Unfortunately now days the food industry interests now dominate the actions of the government regulators. The USDA for example tried to ban sodium nitrate in the late 1970′s but were overridden by the meat industry insisting the chemical was ‘safe’. Today the food and agriculture corporations hold tremendous influence over the food industry and as a result  consumers have little protection from dangerous chemicals intentionally added to foods, medicines and personal care products.
To avoid the dangers of processed meats:
  • Always read ingredient labels
  • Don’t buy anything made with sodium nitrate or MSG
  • Avoid eating red meats served by restaurants, schools, hospitals, hotels or other institutions without asking for details
  • Eat more fresh green organic fruit and vegetables
  • Avoid processed meats always
  • Spread the word and tell others about the dangers of sodium nitrate and MSG and the acids in meat including nitric acid, sulphuric acid, phosphuric acid and uric acid, all poisons to the body.
Antioxidants naturally found in fresh organ fruits and vegetables have been shown to help prevent the formation of cancerous-causing nitrosamines, protecting you from the devastating health effects of animal proteins. The best defence of course is to avoid animal protein/flesh all together!