Category Archives: Prevention

Cancer is a Preventable and Treatable Disease that Requires Major Lifestyle Changes!

“The cure for cancer is NOT found in its treatment but is found in its prevention”  –  Dr. Robert O. Young

Ninety-five-percent (95%) of ALL sickness and diseases are caused by what you eat, what you drink, what you breath and what you think.  Only five-percent (5%) of ALL sickness and diseases are caused by genetics.  The five-percent (5%) of All genetic factors are triggered by the epi-genetics or the alkaline environment of interstitial fluids determined by what you eat, what you drink, what you breath, and what you thing,  Therefore, one-hundred-percent (100%) is caused by what you eat, what you drink, what you breath and what you think.
(Sympathetic Resonance Technology, Scientific Foundations and Summary of Biologic and Clinical Studies, Dec. 2002, Vol. 8, No. 6: 835-842, Alkalizing Nutritional Therapy, medcraveonline.com/IJCAM/IJCAM-02-00046.php Robert O Young and Galina Migalko. Universal Medical Imaging Group, Medical doctor, non-invasive medical diagnostics, USA)

Abstract

This year, more than 1.5 million Americans and more than 18 million people worldwide are expected to be diagnosed with cancer, a disease commonly believed to be preventable. Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the environment and lifestyle. The lifestyle factors include cigarette smoking, diet (fried foods, red meat), alcohol, sun exposure, environmental pollutants, infections, stress, obesity, and physical inactivity. The evidence indicates that of all cancer-related deaths, almost 25–30% are due to tobacco, as many as 30–35% are linked to diet, about 15–20% are due to infections, and the remaining percentage are due to other factors like radiation, stress, physical activity, environmental pollutants etc. Therefore, cancer prevention requires smoking cessation, increased ingestion of fruits and vegetables, moderate use of alcohol, caloric restriction, exercise, avoidance of direct exposure to sunlight, minimal meat consumption, use of whole grains, use of vaccinations, and regular check-ups. In this review, we present evidence that inflammation is the link between the agents/factors that cause cancer and the agents that prevent it. In addition, we provide evidence that cancer is a preventable disease that requires major lifestyle changes.

INTRODUCTION

After sequencing his own genome, pioneer genomic researcher Craig Venter remarked at a leadership for the twenty-first century conference, “Human biology is actually far more complicated than we imagine. Everybody talks about the genes that they received from their mother and father, for this trait or the other. But in reality, those genes have very little impact on life outcomes. Our biology is way too complicated for that and deals with hundreds of thousands of independent factors. Genes are absolutely not our fate. They can give us useful information about the increased risk of a disease, but in most cases they will not determine the actual cause of the disease, or the actual incidence of somebody getting it. Most biology will come from the complex interaction of all the proteins and cells working with environmental factors, not driven directly by the genetic code” (http://indiatoday.digitaltoday.in/index.php?

This statement is very important because looking to the human genome for solutions to most chronic illnesses, including the diagnosis, prevention, and treatment of cancer, is overemphasized in today’s world. Observational studies, however, have indicated that as we migrate from one country to another, our chances of being diagnosed with most chronic illnesses are determined not by the country we come from but by the country we migrate to (1–4). In addition, studies with identical twins have suggested that genes are not the source of most chronic illnesses. For instance, the concordance between identical twins for breast cancer was found to be only 20% (5). Instead of our genes, our lifestyle and environment account for 90–95% of our most chronic illnesses.

Cancer continues to be a worldwide killer, despite the enormous amount of research and rapid developments seen during the past decade. According to recent statistics, cancer accounts for about 23% of the total deaths in the USA and is the second most common cause of death after heart disease (6). Death rates for heart disease, however, have been steeply decreasing in both older and younger populations in the USA from 1975 through 2002. In contrast, no appreciable differences in death rates for cancer have been observed in the United States (6).

By 2020, the world population is expected to have increased to 7.5 billion; of this number, approximately 15 million new cancer cases will be diagnosed, and 12 million cancer patients will die (7). These trends of cancer incidence and death rates again remind us of Dr. John Bailer’s May 1985 judgment of the US national cancer program as a “qualified failure,” a judgment made 14 years after President Nixon’s official declaration of the “War on Cancer.” Even after an additional quarter century of extensive research, researchers are still trying to determine whether cancer is preventable and are asking “If it is preventable, why are we losing the war on cancer?” In this review, we attempt to answer this question by analyzing the potential risk factors of cancer and explore our options for modulating these risk factors.

Cancer is caused by both internal factors (such as inherited mutations, hormones, and immune conditions) and environmental/acquired factors (such as tobacco, diet, radiation, and infectious organisms; Fig. 1). The link between diet and cancer is revealed by the large variation in rates of specific cancers in various countries and by the observed changes in the incidence of cancer in migrating. For example, Asians have been shown to have a 25 times lower incidence of prostate cancer and a ten times lower incidence of breast cancer than do residents of Western countries, and the rates for these cancers increase substantially after Asians migrate to the West (http://www.dietandcancerreportorg/?p=ER).

Fig 1

The role of genes and environment in the development of cancer. A The percentage contribution of genetic and environmental factors to cancer. The contribution of genetic factors and environmental factors towards cancer risk is 5–10% and 90–95% respectively. B Family risk ratios for selected cancers. The numbers represent familial risk ratios, defined as the risk to a given type of relative of an affected individual divided by the population prevalence. The data shown here is taken from a study conducted in Utah to determine the frequency of cancer in the first-degree relatives (parents + siblings + offspring). The familial risk ratios were assessed as the ratio of the observed number of cancer cases among the first degree relatives divided by the expected number derived from the control relatives, based on the years of birth (cohort) of the case relatives. In essence, this provides an age-adjusted risk ratio to first-degree relatives of cases compared with the general population.

C Percentage contribution of each environmental factor. The percentages represented here indicate the attributable-fraction of cancer deaths due to the specified environmental risk factor.

The importance of lifestyle factors in the development of cancer was also shown in studies of monozygotic twins (8). Only 5–10% of all cancers are due to an inherited gene defect. Various cancers that have been linked to genetic defects are shown in Fig. 2. Although all cancers are a result of multiple mutations (9, 10), these mutations are due to interaction with the environment (11, 12).

 Fig. 2

Genes associated with risk of different cancers

These observations indicate that most cancers are not of hereditary origin and that lifestyle factors, such as dietary habits, smoking, alcohol consumption, and infections, have a profound influence on their development (13). Although the hereditary factors cannot be modified, the lifestyle and environmental factors are potentially modifiable. The lesser hereditary influence of cancer and the modifiable nature of the environmental factors point to the preventability of cancer. The important lifestyle factors that affect the incidence and mortality of cancer include tobacco, alcohol, diet, obesity, infectious agents, environmental pollutants, and radiation.

RISK FACTORS OF CANCER

Tobacco

Smoking was identified in 1964 as the primary cause of lung cancer in the US Surgeon General’s Advisory Commission Report (http://profiles.nlm.nih.gov/NN/Views/AlphaChron/date/10006/05/01/2008), and ever since, efforts have been ongoing to reduce tobacco use. Tobacco use increases the risk of developing at least 14 types of cancer (Fig. 3). In addition, it accounts for about 25–30% of all deaths from cancer and 87% of deaths from lung cancer. Compared with nonsmokers, male smokers are 23 times and female smokers 17 times more likely to develop lung cancer.

(http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_Figures_2008.asp accessed on 05/01/2008).

The carcinogenic effects of active smoking are well documented; the U. S. Environmental Protection Agency, for example, in 1993 classified environmental tobacco smoke (from passive smoking) as a known (Group A) human lung carcinogen.

(http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=2835 accessed on 05/01/2008).

Tobacco contains at least 50 carcinogens. For example, one tobacco metabolite, benzopyrenediol epoxide, has a direct etiologic association with lung cancer (14). Among all developed countries considered in total, the prevalence of smoking has been slowly declining; however, in the developing countries where 85% of the world’s population resides, the prevalence of smoking is increasing. According to studies of recent trends in tobacco usage, developing countries will consume 71% of the world’s tobacco by 2010, with 80% increased usage projected for East Asia.

(http://www.fao.org/DOCREP/006/Y4956E/Y4956E00.HTM accessed on 01/11/08)

The use of accelerated tobacco-control programs, with an emphasis in areas where usage is increasing, will be the only way to reduce the rates of tobacco-related cancer mortality.

 Fig. 3

Cancers that have been linked to alcohol and smoking

Percentages represent the cancer mortality attributable to alcohol and smoking in men and women as reported by Irigaray et al. (see 13).

How smoking contributes to cancer is not fully understood. We do know that smoking can alter a large number of cell-signaling pathways. Results from studies in our group have established a link between cigarette smoke and inflammation. Specifically, we showed that tobacco smoke can induce activation of NF-κB, an inflammatory marker (15,16). Thus, anti-inflammatory agents that can suppress NF-κB activation may have potential applications against cigarette smoke.

We also showed that curcumin, derived from the dietary spice turmeric, can block the NF-κB induced by cigarette smoke (15). In addition to curcumin, we discovered that several natural phytochemicals also inhibit the NF-κB induced by various carcinogens (17). Thus, the carcinogenic effects of tobacco appear to be reduced by these dietary agents. A more detailed discussion of dietary agents that can block inflammation and thereby provide chemopreventive effects is presented in the following section.

Alcohol

The first report of the association between alcohol and an increased risk of esophageal cancer was published in 1910 (18). Since then, a number of studies have revealed that chronic alcohol consumption is a risk factor for cancers of the upper aerodigestive tract, including cancers of the oral cavity, pharynx, hypopharynx, larynx, and esophagus (18–21), as well as for cancers of the liver, pancreas, mouth, and breast (Fig. 3). Williams and Horn (22), for example, reported an increased risk of breast cancer due to alcohol. In addition, a collaborative group who studied hormonal factors in breast cancer published their findings from a reanalysis of more than 80% of individual epidemiological studies that had been conducted worldwide on the association between alcohol and breast cancer risk in women. Their analysis showed a 7.1% increase in relative risk of breast cancer for each additional 10 g/day intake of alcohol (23). In another study, Longnecker et al., (24) showed that 4% of all newly diagnosed cases of breast cancer in the USA are due to alcohol use. In addition to it being a risk factor for breast cancer, heavy intake of alcohol (more than 50–70 g/day) is a well-established risk factor for liver (25) and colorectal (26,27) cancers.

There is also evidence of a synergistic effect between heavy alcohol ingestion and hepatitis C virus (HCV) or hepatitis B virus (HBV), which presumably increases the risk of hepatocellular carcinoma (HCC) by more actively promoting cirrhosis. For example, Donato et al. (28) reported that among alcohol drinkers, HCC risk increased linearly with a daily intake of more than 60 g. However, with the concomitant presence of HCV infection, the risk of HCC was two times greater than that observed with alcohol use alone (i.e., a positive synergistic effect). The relationship between alcohol and inflammation has also been well established, especially in terms of alcohol-induced inflammation of the liver.

How alcohol contributes to carcinogenesis is not fully understood but ethanol may play a role. Study findings suggest that ethanol is not a carcinogen but is a cocarcinogen (29). Specifically, when ethanol is metabolized, acetaldehyde and free radicals are generated; free radicals are believed to be predominantly responsible for alcohol-associated carcinogenesis through their binding to DNA and proteins, which destroys folate and results in secondary hyperproliferation. Other mechanisms by which alcohol stimulates carcinogenesis include the induction of cytochrome P-4502E1, which is associated with enhanced production of free radicals and enhanced activation of various procarcinogens present in alcoholic beverages; a change in metabolism and in the distribution of carcinogens, in association with tobacco smoke and diet; alterations in cell-cycle behavior such as cell-cycle duration leading to hyperproliferation; nutritional deficiencies, for example, of methyl, vitamin E, folate, pyridoxal phosphate, zinc, and selenium; and alterations of the immune system. Tissue injury, such as that occurring with cirrhosis of the liver, is a major prerequisite to HCC. In addition, alcohol can activate the NF-κB proinflammatory pathway (30), which can also contribute to tumorigenesis (31). Furthermore, it has been shown that benzopyrene, a cigarette smoke carcinogen, can penetrate the esophagus when combined with ethanol (32). Thus anti-inflammatory agents may be effective for the treatment of alcohol-induced toxicity.

In the upper aerodigestive tract, 25–68% of cancers are attributable to alcohol, and up to 80% of these tumors can be prevented by abstaining from alcohol and smoking (33). Globally, the attributable fraction of cancer deaths due to alcohol drinking is reported to be 3.5% (34). The number of deaths from cancers known to be related to alcohol consumption in the USA could be as low as 6% (as in Utah) or as high as 28% (as in Puerto Rico). These numbers vary from country to country, and in France have approached 20% in males (18).

Diet

In 1981, Doll and Peto (21) estimated that approximately 30–35% of cancer deaths in the USA were linked to diet (Fig. 4). The extent to which diet contributes to cancer deaths varies a great deal, according to the type of cancer (35). For example, diet is linked to cancer deaths in as many as 70% of colorectal cancer cases. How diet contributes to cancer is not fully understood. Most carcinogens that are ingested, such as nitrates, nitrosamines, pesticides, and dioxins, come from food or food additives or from cooking.

 Fig. 4

Cancer deaths (%) linked to diet as reported by Willett (see 35)

Heavy consumption of red meat is a risk factor for several cancers, especially for those of the gastrointestinal tract, but also for colorectal (36–38), prostate (39), bladder (40), breast (41), gastric (42), pancreatic, and oral (43) cancers. Although a study by Dosil-Diaz et al., (44) showed that meat consumption reduced the risk of lung cancer, such consumption is commonly regarded as a risk for cancer for the following reasons. The heterocyclic amines produced during the cooking of meat are carcinogens. Charcoal cooking and/or smoke curing of meat produces harmful carbon compounds such as pyrolysates and amino acids, which have a strong cancerous effect. For instance, PhIP (2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine) is the most abundant mutagen by mass in cooked beef and is responsible for ~20% of the total mutagenicity found in fried beef. Daily intake of PhIP among Americans is estimated to be 280–460 ng/day per person (45).

Nitrites and nitrates are used in meat because they bind to myoglobin, inhibiting botulinum exotoxin production; however, they are powerful carcinogens (46). Long-term exposure to food additives such as nitrite preservatives and azo dyes has been associated with the induction of carcinogenesis (47). Furthermore, bisphenol from plastic food containers can migrate into food and may increase the risk of breast (48) and prostate (49) cancers. Ingestion of arsenic may increase the risk of bladder, kidney, liver, and lung cancers (50). Saturated fatty acids, trans fatty acids, and refined sugars and flour present in most foods have also been associated with various cancers. Several food carcinogens have been shown to activate inflammatory pathways.

Obesity

According to an American Cancer Society study (51), obesity has been associated with increased mortality from cancers of the colon, breast (in postmenopausal women), endometrium, kidneys (renal cell), esophagus (adenocarcinoma), gastric cardia, pancreas, prostate, gallbladder, and liver (Fig. 5). Findings from this study suggest that of all deaths from cancer in the United States, 14% in men and 20% in women are attributable to excess weight or obesity. Increased modernization and a Westernized diet and lifestyle have been associated with an increased prevalence of overweight people in many developing countries (52).

 Fig. 5

Various cancers that have been linked to obesity. In the USA overweight and obesity could account for 14% of all deaths from cancer in men and 20% of those in women (see 51).

Studies have shown that the common denominators between obesity and cancer include neurochemicals; hormones such as insulinlike growth factor 1 (IGF-1), insulin, leptin; sex steroids; adiposity; insulin resistance; and inflammation (53).

Involvement of signaling pathways such as the IGF/insulin/Akt signaling pathway, the leptin/JAK/STAT pathway, and other inflammatory cascades have also been linked with both obesity and cancer (53). For instance, hyperglycemia, has been shown to activate NF-κB (54), which could link obesity with cancer. Also known to activate NF-κB are several cytokines produced by adipocytes, such as leptin, tumor necrosis factor (TNF), and interleukin-1 (IL-1) (55). Energy balance and carcinogenesis has been closely linked (53). However, whether inhibitors of these signaling cascades can reduce obesity-related cancer risk remains unanswered. Because of the involvement of multiple signaling pathways, a potential multi-targeting agent will likely be needed to reduce obesity-related cancer risk.

Infectious Agents

Worldwide, an estimated 17.8% of neoplasms are associated with infections; this percentage ranges from less than 10% in high-income countries to 25% in African countries (56, 57). Viruses account for most infection-caused cancers (Fig. 6). Human papillomavirus, Epstein Barr virus, Kaposi’s sarcoma-associated herpes virus, human T-lymphotropic virus 1, HIV, HBV, and HCV are associated with risks for cervical cancer, anogenital cancer, skin cancer, nasopharyngeal cancer, Burkitt’s lymphoma, Hodgkin’s lymphoma, Kaposi’s sarcoma, adult T-cell leukemia, B-cell lymphoma, and liver cancer.

Fig. 6

Various cancers that have been linked to infection. The estimated total of infection attributable cancer in the year 2002 is 17.8% of the global cancer burden. The infectious agents associated with each type of cancer is shown in the bracket. HPV Human papilloma virus, HTLV human T-cell leukemia virus, HIV human immunodeficiency virus, EBV Epstein–Barr virus (see 57).

In Western developed countries, human papillomavirus and HBV are the most frequently encountered oncogenic DNA viruses. Human papillomavirus is directly mutagenic by inducing the viral genes E6 and E7 (58), whereas HBV is believed to be indirectly mutagenic by generating reactive oxygen species through chronic inflammation (59–61). Human T-lymphotropic virus is directly mutagenic, whereas HCV (like HBV) is believed to produce oxidative stress in infected cells and thus to act indirectly through chronic inflammation (62, 63). However, other microorganisms, including selected parasites such as Opisthorchis viverrini or Schistosoma haematobium and bacteria such as Helicobacter pylori, may also be involved, acting as cofactors and/or carcinogens (64).

The mechanisms by which infectious agents promote cancer are becoming increasingly evident. Infection-related inflammation is the major risk factor for cancer, and almost all viruses linked to cancer have been shown to activate the inflammatory marker, NF-κB (65). Similarly, components of Helicobacter pylorihave been shown to activate NF-κB (66). Thus, agents that can block chronic inflammation should be effective in treating these conditions.

Environmental Pollution

Environmental pollution has been linked to various cancers (Fig. 7). It includes outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons (PAHs); indoor air pollution by environmental tobacco smoke, formaldehyde, and volatile organic compounds such as benzene and 1,3-butadiene (which may particularly affect children); food pollution by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins, and other organochlorines; carcinogenic metals and metalloids; pharmaceutical medicines; and cosmetics (64).

Fig. 7

Various cancers that have been linked to environmental carcinogens. The carcinogens linked to each cancer is shown inside bracket. (see 64).

Numerous outdoor air pollutants such as PAHs increase the risk of cancers, especially lung cancer. PAHs can adhere to fine carbon particles in the atmosphere and thus penetrate our bodies primarily through breathing. Long-term exposure to PAH-containing air in polluted cities was found to increase the risk of lung cancer deaths. Aside from PAHs and other fine carbon particles, another environmental pollutant, nitric oxide, was found to increase the risk of lung cancer in a European population of nonsmokers. Other studies have shown that nitric oxide can induce lung cancer and promote metastasis. The increased risk of childhood leukemia associated with exposure to motor vehicle exhaust was also reported (64).

Indoor air pollutants such as volatile organic compounds and pesticides increase the risk of childhood leukemia and lymphoma, and children as well as adults exposed to pesticides have increased risk of brain tumors, Wilm’s tumors, Ewing’s sarcoma, and germ cell tumors. In utero exposure to environmental organic pollutants was found to increase the risk for testicular cancer. In addition, dioxan, an environmental pollutant from incinerators, was found to increase the risk of sarcoma and lymphoma.

Long-term exposure to chlorinated drinking water has been associated with increased risk of cancer. Nitrates, in drinking water, can transform to mutagenic N-nitroso compounds, which increase the risk of lymphoma, leukemia, colorectal cancer, and bladder cancer (64).

Radiation

Up to 10% of total cancer cases may be induced by radiation (64), both ionizing and non-ionizing, typically from radioactive substances and ultraviolet (UV), pulsed electromagnetic fields. Cancers induced by radiation include some types of leukemia, lymphoma, thyroid cancers, skin cancers, sarcomas, lung and breast carcinomas. One of the best examples of increased risk of cancer after exposure to radiation is the increased incidence of total malignancies observed in Sweden after exposure to radioactive fallout from the Chernobyl nuclear power plant. Radon and radon decay products in the home and/or at workplaces (such as mines) are the most common sources of exposure to ionizing radiation. The presence of radioactive nuclei from radon, radium, and uranium was found to increase the risk of gastric cancer in rats. Another source of radiation exposure is x-rays used in medical settings for diagnostic or therapeutic purposes. In fact, the risk of breast cancer from x-rays is highest among girls exposed to chest irradiation at puberty, a time of intense breast development. Other factors associated with radiation-induced cancers in humans are patient age and physiological state, synergistic interactions between radiation and carcinogens, and genetic susceptibility toward radiation.

Non-ionizing radiation derived primarily from sunlight includes UV rays, which are carcinogenic to humans. Exposure to UV radiation is a major risk for various types of skin cancers including basal cell carcinoma, squamous cell carcinoma, and melanoma. Along with UV exposure from sunlight, UV exposure from sun beds for cosmetic tanning may account for the growing incidence of melanoma. Depletion of the ozone layer in the stratosphere can augment the dose-intensity of UVB and UVC, which can further increase the incidence of skin cancer.

Low-frequency electromagnetic fields can cause clastogenic DNA damage. The sources of electromagnetic field exposure are high-voltage power lines, transformers, electric train engines, and more generally, all types of electrical equipments. An increased risk of cancers such as childhood leukemia, brain tumors and breast cancer has been attributed to electromagnetic field exposure. For instance, children living within 200 m of high-voltage power lines have a relative risk of leukemia of 69%, whereas those living between 200 and 600 m from these power lines have a relative risk of 23%. In addition, a recent meta-analysis of all available epidemiologic data showed that daily prolonged use of mobile phones for 10 years or more showed a consistent pattern of an increased risk of brain tumors (64).

Fruits, vegetables, spices, condiments and cereals with potential to prevent cancer. Fruits include 1 apple, 2apricot, 3 banana, 4 blackberry, 5 cherry, 6 citrus fruits, 7 dessert date, 8 durian, 9 grapes, 10 guava, 11 Indian gooseberry, 12 mango, 13 malay apple, 14 mangosteen, 15 pineapple, 16 pomegranate. Vegetables include 1artichok, 2 avocado, 3 brussels sprout, 4 broccoli, 5 cabbage, 6 cauliflower, 7 carrot, 8 daikon 9 kohlrabi, 10onion, 11 tomato, 12 turnip, 13 ulluco, 14 water cress, 15 okra, 16 potato, 17 fiddle head, 18 radicchio, 19komatsuna, 20 salt bush, 21 winter squash, 22 zucchini, 23 lettuce, 24 spinach. Spices and condiments include 1 turmeric, 2 cardamom, 3 coriander, 4 black pepper, 5 clove, 6 fennel, 7 rosemary, 8 sesame seed, 9 mustard, 10 licorice, 11 garlic, 12 ginger, 13 parsley, 14 cinnamon, 15 curry leaves, 16 kalonji, 17 fenugreek, 18camphor, 19 pecan, 20 star anise, 21 flax seed, 22 black mustard, 23 pistachio, 24 walnut, 25 peanut, 26 cashew nut. Cereals include 1 rice, 2 wheat, 3 oats, 4 rye, 5 barley, 6 maize, 7 jowar, 8 pearl millet, 9 proso millet, 10 foxtail millet, 11 little millet, 12 barnyard millet, 13 kidney bean, 14 soybean, 15 mung bean, 16 black bean, 17 pigeon pea, 18 green pea, 19 scarlet runner bean, 20 black beluga, 21 brown spanish pardina, 22green, 23 green (eston), 24 ivory white, 25 multicolored blend, 26 petite crimson, 27 petite golden, 28 red chief.

Click here to read the entire article:
To learn more about a healthy lifestyle and diet for the prevention of all sickness and disease read The pH Miracle revised and updated and The pH Miracle for Cancer – http://www.phoreveryoung.com

Lecture in Dubai – The Annual Conference on Bacterial, Viral and Infectious Diseases

Join Robert O Young PhD and Galina Migalko MD in Dubai on December 5th and 6th, 2018 for the Annual Conference on Bacterial, Viral and Infectious Diseases. They will be Key Note Speakers and doing a workshop on the New Biology.

For more information and to register go to: https://bacterialdiseases.infectiousconferences.com/organizing-committee.php

The following is the abstract for Dr. Young’s lecture:

The Dismantling of the Viral Theory

Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner

Abstract

There is now over 100 years of documented history and research on the Polio virus and whether or not its treatment by inoculation has been successful in eradicating Polio. I am suggesting in this article and in my lecture that there are significant findings based on historical and past and current research, including my own that the viral theory of Polio and possibly other modern-day diseases, such as Post-Polio Syndrome, Polio Vaccine-Induced Paralysis, Legionnaires, CNS disease, Cancer, HIV/AIDS and now Zika may be caused by acidic chemical poisoning from DDT (dichloro-diphenyl-trichloroethane) and other related DDT pesticides, acidic vaccinations, and other factors including lifestyle and dietary factors rather than from a lone infectious virus. I will present ten historical graphs outlining the history of Polio, the production of DDT, BHC, Lead, Arsenic, Polio vaccinations and the author’s theory that chemical poisoning, vaccination, and lifestyle and dietary choices are a more likely causes for the symptoms of Polio, neurological diseases, Cancer, HIV/AIDS and now Zika.

THE POSSIBLE CAUSE OF POLIO, POST-POLIO, CNS, PVIPD, LEGIONNAIRES, AIDS and the CANCER EPIDEMIC – MASS ACIDIC CHEMICAL POISONING?

References

1. L. N. Kolonel, D. Altshuler, and B. E. Henderson. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nat. Rev. Cancer. 4:519–27 (2004) doi:10.1038/nrc1389. [PubMed]

2. J. K. Wiencke. Impact of race/ethnicity on molecular pathways in human cancer. Nat. Rev. Cancer. 4:79–84 (2004) doi:10.1038/nrc1257. [PubMed]

3. R. G. Ziegler, R. N. Hoover, M. C. Pike, A. Hildesheim, A. M. Nomura, D. W. West, A. H. Wu-Williams, L. N. Kolonel, P. L. Horn-Ross, J. F. Rosenthal, and M. B. Hyer. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst.85:1819–27 (1993) doi:10.1093/jnci/85.22.1819. [PubMed]

4. W. Haenszel and M. Kurihara. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J. Natl. Cancer Inst.40:43–68 (1968). [PubMed]

5. A. S. Hamilton and T. M. Mack. Puberty and genetic susceptibility to breast cancer in a case-control study in twins. N. Engl. J. Med.348:2313–22 (2003) doi:10.1056/NEJMoa021293. [PubMed]

6. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun. Cancer statistics, 2007. CA Cancer J. Clin.57:43–66 (2007). [PubMed]

7. F. Brayand, and B. Moller. Predicting the future burden of cancer. Nat. Rev. Cancer. 6:63–74 (2006) doi:10.1038/nrc1781. [PubMed]

8. P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med.343:78–85 (2000) doi:10.1056/NEJM200007133430201. [PubMed]

9. K. R. Loeb, and L. A. Loeb. Significance of multiple mutations in cancer. Carcinogenesis. 21:379–85 (2000) doi:10.1093/carcin/21.3.379. [PubMed]

10. W. C. Hahn, and R. A. Weinberg. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer. 2:331–41 (2002) doi: 10.1038/nrc795. [PubMed]

11. L. A. Mucci, S. Wedren, R. M. Tamimi, D. Trichopoulos, and H. O. Adami. The role of gene-environment interaction in the aetiology of human cancer: examples from cancers of the large bowel, lung and breast. J. Intern. Med.249:477–93 (2001) doi:10.1046/j.1365-2796.2001.00839.x. [PubMed]

12. K. Czene, and K. Hemminki. Kidney cancer in the Swedish Family Cancer Database: familial risks and second primary malignancies. Kidney Int.61:1806–13 (2002) doi:10.1046/j.1523-1755.2002.00304.x.[PubMed]

13. P. Irigaray, J. A. Newby, R. Clapp, L. Hardell, V. Howard, L. Montagnier, S. Epstein, and D. Belpomme. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed. Pharmacother.61:640–58 (2007) doi:10.1016/j.biopha.2007.10.006. [PubMed]

14. M. F. Denissenko, A. Pao, M. Tang, and G. P. Pfeifer. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 274:430–2 (1996) doi:10.1126/science.274.5286.430.[PubMed]

15. R. J. Anto, A. Mukhopadhyay, S. Shishodia, C. G. Gairola, and B. B. Aggarwal. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis. 23:1511–8 (2002) doi: 10.1093/carcin/23.9.1511. [PubMed]

16. S. Shishodiaand, and B. B. Aggarwal. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res. 64:5004–12 (2004) doi:10.1158/0008-5472.CAN-04-0206. [PubMed]

17. H. Ichikawa, Y. Nakamura, Y. Kashiwada, and B. B. Aggarwal. Anticancer drugs designed by mother nature: ancient drugs but modern targets. Curr Pharm Des. 13:3400–16 (2007) doi:10.2174/138161207782360500. [PubMed]

18. A. J. Tuyns. Epidemiology of alcohol and cancer. Cancer Res. 39:2840–3 (1979). [PubMed]

19. H. Maier, E. Sennewald, G. F. Heller, and H. Weidauer. Chronic alcohol consumption—the key risk factor for pharyngeal cancer. Otolaryngol. Head Neck Surg.110:168–73 (1994). [PubMed]

20. H. K. Seitz, F. Stickel, and N. Homann. Pathogenetic mechanisms of upper aerodigestive tract cancer in alcoholics. Int. J. Cancer. 108:483–7 (2004) doi:10.1002/ijc.11600. [PubMed]

21. R. Doll, and R. Peto. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 66:1191–308 (1981). [PubMed]

22. R. R. Williams, and J. W. Horm. Association of cancer sites with tobacco and alcohol consumption and socioeconomic status of patients: interview study from the Third National Cancer Survey. J. Natl. Cancer Inst.58:525–47 (1977). [PubMed]

23. N. Hamajima et al. Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br. J. Cancer. 87:1234–45 (2002) doi:10.1038/sj.bjc.6600596. [PMC free article] [PubMed]

24. M. P. Longnecker, P. A. Newcomb, R. Mittendorf, E. R. Greenberg, R. W. Clapp, G. F. Bogdan, J. Baron, B. MacMahon, and W. C. Willett. Risk of breast cancer in relation to lifetime alcohol consumption. J. Natl. Cancer Inst.87:923–9 (1995) doi:10.1093/jnci/87.12.923. [PubMed]

25. F. Stickel, D. Schuppan, E. G. Hahn, and H. K. Seitz. Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut. 51:132–9 (2002) doi:10.1136/gut.51.1.132. [PMC free article] [PubMed]

26. H. K. Seitz, G. Poschl, and U. A. Simanowski. Alcohol and cancer. Recent Dev Alcohol. 14:67–95 (1998) doi:10.1007/0-306-47148-5_4. [PubMed]

27. H. K. Seitz, S. Matsuzaki, A. Yokoyama, N. Homann, S. Vakevainen, and X. D. Wang. Alcohol and cancer. Alcohol Clin. Exp. Res.25:137S–143S (2001). [PubMed]

28. F. Donato, U. Gelatti, R. M. Limina, and G. Fattovich. Southern Europe as an example of interaction between various environmental factors: a systematic review of the epidemiologic evidence. Oncogene. 25:3756–70 (2006) doi:10.1038/sj.onc.1209557. [PubMed]

29. G. Poschl, and H. K. Seitz. Alcohol and cancer. Alcohol Alcohol. 39:155–65 (2004) doi:10.1093/alcalc/agh057. [PubMed]

30. G. Szabo, P. Mandrekar, S. Oak, and J. Mayerle. Effect of ethanol on inflammatory responses. Implications for pancreatitis. Pancreatology. 7:115–23 (2007) doi:10.1159/000104236. [PMC free article][PubMed]

31. B. B. Aggarwal. Nuclear factor-kappaB: the enemy within. Cancer Cell. 6:203–208 (2004) doi:10.1016/j.ccr.2004.09.003. [PubMed]

32. M. Kuratsune, S. Kohchi, and A. Horie. Carcinogenesis in the esophagus. I. Penetration of benzo(a) pyrene and other hydrocarbons into the esophageal mucosa. Gann. 56:177–87 (1965). [PubMed]

33. C. La Vecchia, A. Tavani, S. Franceschi, F. Levi, G. Corrao, and E. Negri. Epidemiology and prevention of oral cancer. Oral Oncol.33:302–312 (1997). [PubMed]

34. P. Boffetta, M. Hashibe, C. La Vecchia, W. Zatonski, and J. Rehm. The burden of cancer attributable to alcohol drinking. Int. J. Cancer. 119:884–887 (2006) doi:10.1002/ijc.21903. [PubMed]

35. W. C. Willett. Diet and cancer. Oncologist. 5:393–404 (2000) doi:10.1634/theoncologist.5-5-393.[PubMed]

36. S. A. Bingham, R. Hughes, and A. J. Cross. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr.132:3522S–3525S (2002).[PubMed]

37. A. Chao, M. J. Thun, C. J. Connell, M. L. McCullough, E. J. Jacobs, W. D. Flanders, C. Rodriguez, R. Sinha, and E. E. Calle. Meat consumption and risk of colorectal cancer. JAMA. 293:172–182 (2005) doi:10.1001/jama.293.2.172. [PubMed]

38. N. Hogg. Red meat and colon cancer: heme proteins and nitrite in the gut. A commentary on diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Biol. Med.43:1037–1039 (2007) doi:10.1016/j.freeradbiomed.2007.07.006. [PubMed]

39. C. Rodriguez, M. L. McCullough, A. M. Mondul, E. J. Jacobs, A. Chao, A. V. Patel, M. J. Thun, and E. E. Calle. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomarkers Prev. 15:211–216 (2006) doi:10.1158/1055-9965.EPI-05-0614. [PubMed]

40. R. Garcia-Closas, M. Garcia-Closas, M. Kogevinas, N. Malats, D. Silverman, C. Serra, A. Tardon, A. Carrato, G. Castano-Vinyals, M. Dosemeci, L. Moore, N. Rothman, and R. Sinha. Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur. J. Cancer. 43:1731–1740 (2007) doi:10.1016/j.ejca.2007.05.007. [PubMed]

41. A. Tappel. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med. Hypotheses. 68:562–4 (2007) doi:10.1016/j.mehy.2006.08.025. [PubMed]

42. L. H. O’Hanlon. High meat consumption linked to gastric-cancer risk. Lancet Oncol. 7:287 (2006) doi:10.1016/S1470-2045(06)70638-6. [PubMed]

43. T. N. Toporcov, J. L. Antunes, and M. R. Tavares. Fat food habitual intake and risk of oral cancer. Oral Oncol. 40:925–931 (2004) doi:10.1016/j.oraloncology.2004.04.007. [PubMed]

44. O. Dosil-Diaz, A. Ruano-Ravina, J. J. Gestal-Otero, and J. M. Barros-Dios. Meat and fish consumption and risk of lung cancer: A case-control study in Galicia, Spain. Cancer Lett.252:115–122 (2007) doi:10.1016/j.canlet.2006.12.008. [PubMed]

45. S. N. Lauber, and N. J. Gooderham. The cooked meat derived genotoxic carcinogen 2-amino-3-methylimidazo[4,5-b]pyridine has potent hormone-like activity: mechanistic support for a role in breast cancer. Cancer Res.67:9597–0602 (2007) doi:10.1158/0008–5472.CAN-07-1661. [PubMed]

46. D. Divisi, S. Di Tommaso, S. Salvemini, M. Garramone, and R. Crisci. Diet and cancer. Acta Biomed. 77:118–123 (2006). [PubMed]

47. Y. F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K. Iwama, K. Taniguchi, and S. Tsuda. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res.519:103–119 (2002). [PubMed]

48. M. Durando, L. Kass, J. Piva, C. Sonnenschein, A. M. Soto, E. H. Luque, and M. Munoz-de-Toro. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ. Health Perspect.115:80–6 (2007). [PMC free article] [PubMed]

49. S. M. Ho, W. Y. Tang, J. Belmonte de Frausto, and G. S. Prins. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res.66:5624–32 (2006) doi:10.1158/0008-5472.CAN-06-0516.[PMC free article] [PubMed]

50. A. Szymanska-Chabowska, J. Antonowicz-Juchniewicz, and R. Andrzejak. Some aspects of arsenic toxicity and carcinogenicity in living organism with special regard to its influence on cardiovascular system, blood and bone marrow. Int. J. Occup. Med. Environ. Health. 15:101–116 (2002). [PubMed]

51. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 348:1625–1638 (2003) doi:10.1056/NEJMoa021423. [PubMed]

52. A. Drewnowski, and B. M. Popkin. The nutrition transition: new trends in the global diet. Nutr. Rev.55:31–43 (1997). [PubMed]

53. S. D. Hursting, L. M. Lashinger, L. H. Colbert, C. J. Rogers, K. W. Wheatley, N. P. Nunez, S. Mahabir, J. C. Barrett, M. R. Forman, and S. N. Perkins. Energy balance and carcinogenesis: underlying pathways and targets for intervention. Curr. Cancer Drug Targets. 7:484–491 (2007) doi:10.2174/156800907781386623. [PubMed]

54. A. Nareika, Y. B. Im, B. A. Game, E. H. Slate, J. J. Sanders, S. D. London, M. F. Lopes-Virella, and Y. Huang. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kappaB and AP-1 activities. J. Endocrinol.196:45–55 (2008) doi:10.1677/JOE-07-0145. [PubMed]

55. C. H. Tang, Y. C. Chiu, T. W. Tan, R. S. Yang, and W. M. Fu. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J. Immunol.179:5483–5492 (2007). [PubMed]

56. P. Pisani, D. M. Parkin, N. Munoz, and J. Ferlay. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol. Biomarkers Prev.6:387–400 (1997). [PubMed]

57. D. M. Parkin. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer. 118:3030–3044 (2006) doi:10.1002/ijc.21731. [PubMed]

58. S. Song, H. C. Pitot, and P. F. Lambert. The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol.73:5887–5893 (1999). [PMC free article] [PubMed]

59. B. S. Blumberg, B. Larouze, W. T. London, B. Werner, J. E. Hesser, I. Millman, G. Saimot, and M. Payet. The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am. J. Pathol.81:669–682 (1975). [PMC free article] [PubMed]

60. T. M. Hagen, S. Huang, J. Curnutte, P. Fowler, V. Martinez, C. M. Wehr, B. N. Ames, and F. V. Chisari. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc. Natl. Acad. Sci. U S A. 91:12808–12812 (1994) doi:10.1073/pnas.91.26.12808. [PMC free article] [PubMed]

61. A. L. Jackson, and L. A. Loeb. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res.477:7–21 (2001) doi:10.1016/S0027-5107(01)00091-4. [PubMed]

62. N. De Maria, A. Colantoni, S. Fagiuoli, G. J. Liu, B. K. Rogers, F. Farinati, D. H. Van Thiel, and R. A. Floyd. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic. Biol. Med.21:291–5 (1996) doi:10.1016/0891–5849(96)00044-5. [PubMed]

63. K. Koike, T. Tsutsumi, H. Fujie, Y. Shintani, and M. Kyoji. Molecular mechanism of viral hepatocarcinogenesis. Oncology. 62(Suppl 1):29–37 (2002) doi:10.1159/000048273. [PubMed]

64. D. Belpomme, P. Irigaray, L. Hardell, R. Clapp, L. Montagnier, S. Epstein, and A. J. Sasco. The multitude and diversity of environmental carcinogens. Environ. Res.105:414–429 (2007) doi:10.1016/j.envres.2007.07.002. [PubMed]

65. Y. S. Guan, Q. He, M. Q. Wang, and P. Li. Nuclear factor kappa B and hepatitis viruses. Expert Opin. Ther. Targets. 12:265–280 (2008) doi:10.1517/14728222.12.3.265. [PubMed]

66. S. Takayama, H. Takahashi, Y. Matsuo, Y. Okada, and T. Manabe. Effects of Helicobacter pylori infection on human pancreatic cancer cell line. Hepatogastroenterology. 54:2387–2391 (2007). [PubMed]

67. K. A. Steinmetz, and J. D. Potter. Vegetables, fruit, and cancer prevention: a review. J. Am. Diet Assoc.96:1027–1039 (1996) doi:10.1016/S0002–8223(96)00273-8. [PubMed]

68. P. Greenwald. Lifestyle and medical approaches to cancer prevention. Recent Results Cancer Res.166:1–15 (2005). [PubMed]

69. H. Vainio, and E. Weiderpass. Fruit and vegetables in cancer prevention. Nutr. Cancer. 54:111–42 (2006) doi:10.1207/s15327914nc5401_13. [PubMed]

70. L. W. Wattenberg. Chemoprophylaxis of carcinogenesis: a review. Cancer Res. 26:1520–1526 (1966).[PubMed]

71. B. B. Aggarwal, and S. Shishodia. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol.71:1397–1421 (2006) doi:10.1016/j.bcp.2006.02.009. [PubMed]

72. H. Nishino, M. Murakosh, T. Ii, M. Takemura, M. Kuchide, M. Kanazawa, X. Y. Mou, S. Wada, M. Masuda, Y. Ohsaka, S. Yogosawa, Y. Satomi, and K. Jinno. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev.21:257–264 (2002) doi:10.1023/A:1021206826750. [PubMed]

73. K. B. Harikumar, and B. B. Aggarwal. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle. 7:1020–1037 (2008). [PubMed]

74. G. L. Russo. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem. Pharmacol. 74:533–544 (2007) doi:10.1016/j.bcp.2007.02.014. [PubMed]

75. R. Agarwal, C. Agarwal, H. Ichikawa, R. P. Singh, and B. B. Aggarwal. Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 26:4457–98 (2006). [PubMed]

76. E. G. Rogan. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo. 20:221–228 (2006). [PubMed]

77. N. Juge, R. F. Mithen, and M. Traka. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 64:1105–27 (2007) doi:10.1007/s00018-007-6484-5. [PubMed]

78. L. Chen, and H. Y. Zhang. Cancer preventive mechanisms of the green tea polyphenol (−)-epigallocatechin-3-gallate. Molecules. 12:946–957 (2007). [PMC free article] [PubMed]

79. P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett. in press (2008). [PubMed]

80. F. Khanum, K. R. Anilakumar, and K. R. Viswanathan. Anticarcinogenic properties of garlic: a review. Crit. Rev. Food Sci. Nutr.44:479–488 (2004) doi:10.1080/10408690490886700. [PubMed]

81. G. Sethi, K. S. Ahn and B. B. Aggarwal. Targeting NF-kB activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mole Cancer Res. in press (2008). [PubMed]

82. Y. J. Surh. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol.40:1091–1097 (2002) doi:10.1016/S0278-6915(02)00037-6. [PubMed]

83. Y. Shukla, and M. Singh. Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol.45:683–690 (2007) doi:10.1016/j.fct.2006.11.002. [PubMed]

84. M. M. al-Harbi, S. Qureshi, M. Raza, M. M. Ahmed, A. B. Giangreco, and A. H. Shah. Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. Eur. J. Cancer Prev.4:307–318 (1995) doi:10.1097/00008469-199508000-00006. [PubMed]

85. C. K. Sen, K. E. Traber, and L. Packer. Inhibition of NF-kappa B activation in human T-cell lines by anetholdithiolthione. Biochem. Biophys. Res. Commun.218:148–53 (1996) doi:10.1006/bbrc.1996.0026.[PubMed]

86. R. A. Lubet, V. E. Steele, I. Eto, M. M. Juliana, G. J. Kelloff, and C. J. Grubbs. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer. 72:95–101 (1997) doi:10.1002/(SICI)1097-0215(19970703)72:1<95::AID-IJC14>3.0.CO;2-9. [PubMed]

87. Y. Nakagawa, and T. Suzuki. Cytotoxic and xenoestrogenic effects via biotransformation of trans-anethole on isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. Biochem. Pharmacol.66:63–73 (2003) doi:10.1016/S0006-2952(03)00208-9. [PubMed]

88. S. Lam, C. MacAulay, J. C. Le Riche, Y. Dyachkova, A. Coldman, M. Guillaud, E. Hawk, M. O. Christen, and A. F. Gazdar. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J. Natl. Cancer Inst.94:1001–1009 (2002). [PubMed]

89. S. Shishodia, and B. B. Aggarwal. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene. 25:1463–1473 (2006) doi:10.1038/sj.onc.1209194. [PubMed]

90. R. Ghosh, N. Nadiminty, J. E. Fitzpatrick, W. L. Alworth, T. J. Slaga, and A. P. Kumar. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem.280:5812–5819 (2005) doi:10.1074/jbc.M411429200. [PubMed]

91. K. Sukumaran, M. C. Unnikrishnan, and R. Kuttan. Inhibition of tumour promotion in mice by eugenol. Indian J. Physiol. Pharmacol.38:306–308 (1994). [PubMed]

92. K. Imaida, M. Hirose, S. Yamaguchi, S. Takahashi, and N. Ito. Effects of naturally occurring antioxidants on combined 1,2-dimethylhydrazine- and 1-methyl-1-nitrosourea-initiated carcinogenesis in F344 male rats. Cancer Lett.55:53–59 (1990) doi:10.1016/0304-3835(90)90065-6. [PubMed]

93. M. Pisano, G. Pagnan, M. Loi, M. E. Mura, M. G. Tilocca, G. Palmieri, D. Fabbri, M. A. Dettori, G. Delogu, M. Ponzoni, and C. Rozzo. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer. 6:8 (2007) doi:10.1186/1476-4598-6-8.[PMC free article] [PubMed]

94. S. S. Kim, O. J. Oh, H. Y. Min, E. J. Park, Y. Kim, H. J. Park, Y. Nam Han, and S. K. Lee. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 73:337–348 (2003) doi:10.1016/S0024–3205(03)00288-1. [PubMed]

95. H. P. Deigner, G. Wolf, U. Ohlenmacher, and J. Reichling. 1¢-Hydroxyeugenol- and coniferyl alcohol derivatives as effective inhibitors of 5-lipoxygenase and Cu(2+)-mediated low density lipoprotein oxidation. Evidence for a dual mechanism. Arzneimittelforschung. 44:956–961 (1994). [PubMed]

96. C. J. Rompelberg, M. J. Steenwinkel, J. G. van Asten, J. H. van Delft, R. A. Baan, and H. Verhagen. Effect of eugenol on the mutagenicity of benzo[a]pyrene and the formation of benzo[a]pyrene-DNA adducts in the lambda-lacZ-transgenic mouse. Mutat. Res.369:87–96 (1996) doi:10.1016/S0165-1218(96)90052-X. [PubMed]

97. D. P. Richardson. The grain, the wholegrain and nothing but the grain: the science behind wholegrain and the reduced risk of heart disease and cancer. Nutr. Bull.25:353–360 (2000) doi:10.1046/j.1467-3010.2000.00083.x.

98. H. E. Miller, F. Rigelhof, L. Marquart, A. Prakash, and M. Kanter. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr.19:312S–319S (2000). [PubMed]

99. J. L. Slavin, D. Jacobs, and L. Marquart. Grain processing and nutrition. Crit. Rev. Food Sci. Nutr.40:309–326 (2000) doi:10.1080/10408690091189176. [PubMed]

100. L. Chatenoud, A. Tavani, C. La Vecchia, D. R. Jacobs, Jr, E. Negri, F. Levi, and S. Franceschi. Whole grain food intake and cancer risk. Int. J. Cancer. 77:24–8 (1998) doi:10.1002/(SICI)1097-0215(19980703)77:1<24::AID-IJC5>3.0.CO;2-1. [PubMed]

101. D. R. Jacobs, Jr, L. Marquart, J. Slavin, and L. H. Kushi. Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr. Cancer. 30:85–96 (1998). [PubMed]

102. L. Marquart, K. L. Wiemer, J. M. Jones, and B. Jacob. Whole grains health claims in the USA and other efforts to increase whole-grain consumption. Proc. Nutr. Soc.62:151–160 (2003) doi:10.1079/PNS2003242. [PubMed]

103. M. Eastwood, and D. Kritchevsky. Dietary fiber: how did we get where we are? Annu. Rev. Nutr.25:1–8 (2005) doi:10.1146/annurev.nutr.25.121304.131658. [PubMed]

104. A. McIntyre, P. R. Gibson, and G. P. Young. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 34:386–391 (1993) doi:10.1136/gut.34.3.386.[PMC free article] [PubMed]

105. J. L. Slavin, D. Jacobs, L. Marquart, and K. Wiemer. The role of whole grains in disease prevention. J. Am. Diet Assoc.101:780–5 (2001) doi:10.1016/S0002-8223(01)00194-8. [PubMed]

106. K. S. Ahn, G. Sethi, K. Krishnan, and B. B. Aggarwal. Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J. Biol. Chem.282:809–820 (2007) doi:10.1074/jbc.M610028200. [PubMed]

107. F. H. Sarkar, S. Adsule, S. Padhye, S. Kulkarni, and Y. Li. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev. Med. Chem.6:401–407 (2006) doi:10.2174/138955706776361439. [PubMed]

108. K. W. Lee, H. J. Lee, Y. J. Surh, and C. Y. Lee. Vitamin C and cancer chemoprevention: reappraisal. Am. J. Clin. Nutr.78:1074–1078 (2003). [PubMed]

109. B. A. Ingraham, B. Bragdon, and A. Nohe. Molecular basis of the potential of vitamin D to prevent cancer. Curr. Med. Res. Opin.24:139–149 (2008) doi:10.1185/030079907X253519. [PubMed]

110. F. W. Booth, M. V. Chakravarthy, S. E. Gordon, and E. E. Spangenburg. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol.93:3–30 (2002).[PubMed]

111. G. A. Colditz, C. C. Cannuscio, and A. L. Frazier. Physical activity and reduced risk of colon cancer: implications for prevention. Cancer Causes Control. 8:649–67 (1997) doi:10.1023/A:1018458700185.[PubMed]

112. A. R. Shors, C. Solomon, A. McTiernan, and E. White. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 12:599–606 (2001) doi:10.1023/A:1011211615524.[PubMed]

113. A. Tannenbaum, and H. Silverstone. The initiation and growth of tumors. Introduction. I. Effects of underfeeding. Am. J. Cancer. 38:335–350 (1940).

114. S. D. Hursting, J. A. Lavigne, D. Berrigan, S. N. Perkins, and J. C. Barrett. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med.54:131–152 (2003) doi:10.1146/annurev.med.54.101601.152156. [PubMed]

115. M. H. Ross, and G. Bras. Lasting influence of early caloric restriction on prevalence of neoplasms in the rat. J. Natl. Cancer Inst.47:1095–1113 (1971). [PubMed]

116. D. Albanes. Total calories, body weight, and tumor incidence in mice. Cancer Res.47:1987–92 (1987).[PubMed]

117. L. Gross, and Y. Dreyfuss. Reduction in the incidence of radiation-induced tumors in rats after restriction of food intake. Proc. Natl. Acad. Sci. U S A. 81:7596–7598 (1984) doi:10.1073/pnas.81.23.7596. [PMC free article] [PubMed]

118. L. Gross, and Y. Dreyfuss. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake. Proc. Natl. Acad. Sci. U S A. 87:6795–6797 (1990) doi:10.1073/pnas.87.17.6795.[PMC free article] [PubMed]

119. K. Yoshida, T. Inoue, K. Nojima, Y. Hirabayashi, and T. Sado. Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc. Natl. Acad. Sci. U S A. 94:2615–2619 (1997) doi:10.1073/pnas.94.6.2615. [PMC free article] [PubMed]

120. V. D. Longo, and C. E. Finch. Evolutionary medicine: From dwarf model systems to healthy centenarians? Science. 299:1342–1346 (2003) doi:10.1126/science.1077991. [PubMed]

The Efficacy of Sodium Bicarbonate in the Treatment of Medically Diagnosed Breast Cancer

Micrographs Indicating Breast Cancer Using Thermography (Left) and UltraSound with Doppler (Right) Showing a 14.2 cm Tumour
Micrographs Indicating Breast Cancer Using Thermography (Left) and UltraSound with Doppler (Right) Showing a 14.2 cm Tumor

PubMed

US National Library of MedicineNational Institutes of Health

Br J Cancer. 1999 Jun;80(7):1005-11.

Enhancement of chemotherapy by manipulation of tumour pH.

Raghunand N1, He Xvan Sluis RMahoney BBaggett BTaylor CWPaine-Murrieta GRoe DBhujwalla ZMGillies RJ.

Author information

Abstract

The extracellular (interstitial) pH (pHe) of solid tumours is significantly more acidiccompared to normal tissues. In-vitro, low pH reduces the uptake of weakly basic chemotherapeutic drugs and, hence, reduces their cytotoxicity. This phenomenon has been postulated to contribute to a ‘physiological’ resistance to weakly basic drugs in vivo. Doxorubicin is a weak base chemotherapeutic agent that is commonly used in combination chemotherapy to clinically treat breast cancers. This report demonstrates that MCF-7 human breast cancer cells in vitro are more susceptible to doxorubicin toxicity at pH 7.4, compared to pH 6.8. Furthermore 31P-magnetic resonance spectroscopy (MRS) has shown that the pHe of MCF-7 human breast cancer xenografts can be effectively and significantly raised with sodium bicarbonate in drinking water. The bicarbonate-induced extracellular alkalinization leads to significant improvements in the therapeutic effectiveness of doxorubicin against MCF-7 xenografts in vivo. Although physiological resistance to weakly basic chemotherapeutics is well-documented in vitro and in theory, these data represent the first in vivo demonstration of this important phenomenon.

PMID: 10362108 PMCID: PMC2363059 DOI: 10.1038/sj.bjc.6690455

Ariel Green reversed her medically diagnosed breast cancer with 3 cancerous tumors living the pH alkaline diet!

One of the 3 golf ball sized lumps in my breast that disappeared after changing to a pH alkaline diet. 

The following is Ariel Green’s personal story of reversing her cancerous breast condition involving 3 tumors without surgery, chemotherapy and radiation!

“Do you have a health condition you think is incurable? Do you want to lose weight and keep it off permanently? Do you want to reverse aging? Do you do everything you can to be healthy but still don’t feel quite right? The alkaline diet could cure all this and more; but is it too good to be true?”

“The alkaline diet is quickly becoming popular with backing of celebrates like Kate Moss, Gwyneth Paltrow, Jennifer Aniston, Linda Gray, Bill Clinton, Larry Hagman, and Kirsten Dunst. In 2003 Cris Carr, former Budweiser girl, made a move documentary on her battle with cancer and how she reversed the cancer with an alkaline diet. You may have heard about the alkaline diet on the news or in one of several interviews on the Oprah Winery show. You can find testimonies of people all over the internet that completely reversed every day illnesses as well as cancer, HIV MS, diabetes type1&2, and other chronic diseases.”

“How does it work? The alkaline diet works on the premise that our bodies are self healing. In order for the body to heal itself it needs the right tools one being the correct pH, others being sufficient nutrients, water, and exercise. The main thing that affects our pH is our diets. By eating alkalizing foods and minimizing acidic foods our bodies can begin to heal, prevent sickness, and help protect from external acid factors like stress and radiation. To maintain a good pH in our bodies we need to eat at least 70% alkaline foods and no more than 30% mildly acidic foods. Alkaline foods include most cooked and raw vegetables, some beans, and few fruits, grains, & nuts. Acidic foods include meat, dairy, sugar, processed foods, coffee, and most fruits, grains, and nuts.”

“Sound too hard? Well, you don’t have to jump right in. Most people have better results by making slow gradual changes to their diet. Some people only need to make a couple of small changes to start seeing results. There are also many tasty alkaline versions of acidic foods; so don’t worry about felling deprived.”

“So does the alkaline lifestyle and diet really work? Apparently it does from all the testimonies on the internet. I tried it myself in 2006 when I found out I had three breast tumors that my doctor told me had to be surgically removed. Within six months the cancerous tumors were gone, and so were my allergies, chronic knee & back pain, and my problem with vertigo that my doctors could not explain or treat. I also have more energy and I don’t get colds anymore. I have been on the pH alkaline diet since 2006 and continue to maintain excellent health. I have met many people that have completely reversed their health problems with the pH alkaline diet. I also know a couple of people that it did not work completely for but it did drastically improve their health. Many people give up on alkalizing before it has a chance to work because they feel deprived. They think they can only eat salad; but this is not true.”

“Supplementation is also important as there are some vitamins and minerals than can be hard to get on an alkaline diet. There are also many supplements that can make alkalizing quicker and easier. The pH alkaline diet can be hard and take a long time to get results if you don’t know enough about it. So it is best to read up on it and get a good pH coach. There is very little clinical research on the pH alkaline diet and its effects on specific disease conditions. However, an article published in PubMed says there supporting research that shows the pH alkaline diet can support health and reverse disease but more research is needed http://www.ncbi.nlm.nih.gov/pubmed/22013455.”

“It will be many years before clinical research can be done on the pH alkaline diet with every health problem. So it is best to consult a health professional before changing your diet especially if you have a chronic disease.”

“Some health problems with supporting clinical studies on the alkaline diet & treatments include cancer, low back pain, bone loss, and increased lean tissue mass in older adults:”

“In a study published in PubMed a high pH treatment was tested on over 30 humans with cancer. In each case the cancer disappeared. http://www.ncbi.nlm.nih.gov/pubmed?term=6522424

Supplementation with alkaline minerals reduces symptoms in patients with chronic lower back pain. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195546/?tool=pubmed

“Increasing the alkaline content of the diet may slow bone loss in healthy older adults. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630872/

“Alkaline diets favor lean tissue mass in older adults. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597402/

 

To learn more read and share, The pH Miracle book 1, The pH Miracle revised and updated book 2, The pH Miracle for Cancer and the newly released book The Cancer Solution by Robert O. Young C PT, MSc, DSc, PhD, Naturopathic Practitioner

 http://www.phoreveryoung.comhttp://www.amazon.comhttp://www.phmiracle.com

The Power of Love

Love = energy = mc2

Love = energy = mc2

Can positive or negative thoughts and emotions affect your body’s delicate biochemistry or the acid/alkaline pH balance?

Love, fear, joy, anger, sadness, happiness, resentment. Can positive or negative emotions affect your body’s physical, mental and spiritual health?

Is a woman more likely to become pregnant if she eats a lot of vegetables or if she were to go on a long, relaxing vacation?

Are you more likely to do cancer if you have a hot temper?

Do people who laugh a lot live longer?

Does your anxiety or fear of crowds, elevators, blood, heights, spiders, hospitals, or airplanes somehow affect your health?

My theory of one sickness, one disease and one health, set forth in what I call “The New Biology,” not only considers how our diet affects our physiology, but also how our psychology affects our physiology and how our psychology affects our spirituality.

Not only does the health of your body affect the emotions of your mind, but your thoughts and feelings can affect the health of your entire body.

Bottom line, your mental state is ever so critical. In so many ways, your mental state, if it’s negative, can create more metabolic acids than the acidic food that you’re eating

In fact, you can create two or three times more metabolic acids from your thoughts or your mental and emotional state than from ingesting highly acidic dairy, animal protein, sugar and alcohol.

So your thoughts are critical. Your thoughts or words do become matter, and can affect your physiology in a negative or positive way. Your thoughts do become biology. And the way that thoughts become biology is as follows:

When you have a thought or say a word, it requires electrical or electron energy for the brain cell(s) to produce those actions. And as you carry on with that thought, you are burning or consuming energy. And when you are consuming electrical energy in your thoughts, you are producing a biological waste product called acid which is an energetic waste product which can be measured in pH, oxidative reduction potential, rH2 or redox, hertz and decibels.

Next, if the metabolic acids from your thoughts are not properly eliminated through the four channels of elimination which are urination, perspiration, respiration or defecation (form women menstruation), then the acids from your thoughts are moved out into your connective and fatty tissues ­because it must not be allowed to affect the pH of the blood and the interstitial fluids of the interstitium or the fluids that surround the cells. The delicate pH balance of the blood and the interstitium must remain quite constant 7.365 to remain healthy.

What happens next is this. As the excess and overload of acid are thrown out into the body tissues or intestitium, this can easily lead to all sorts of symptomologies: lupus, fibromyalgia, Lyme’s, arthritis, muscle pain, fatigue, tiredness, obesity, cancerous breasts, cancerous prostate, cancerous stomach and/or bowels, indigestion, acid reflux, heart burn, heart attacks, multiple sclerosis, Parkinson’s, dementia, autism, and the list goes on and on.

 

For example let’s say you’ve been doing sadness or depression. This downer feeling is coming from a negative experience that you keep looping and re-looping in your head. It’s like a mind movie. It’s a mini-drama that you keep playing over and over. And because you are constantly thinking about it, eventually you even start to be concerned or worried about the fact that you are so preoccupied with the whole affair. So now in addition to the sad drama, you are experiencing upset about the fact that you’re having the drama itself. All of this thinking requires electrical energy and when you’re consuming electrical energy in the form of electrons you are also producing metabolic acids.

Do you know any angry people? You may not know it, but many people who become angry easily not only get angry at various people, events, and situations, but eventually they are irritated with themselves for being so angry at everything else. Anger, for instance, requires a tremendous amount of energy and emits a great deal of electrical energy. You have undoubtedly felt the vibrational energy of someone who is angry. Or maybe you have felt your own anger and how it can upset your physiology, i.e., especially upset your stomach and bowels with excess acid leading to indigestion, stomach pain, acid reflux or ulcers.

Even worse, many of these negative emotions are chronic and can be traced all the way back to early childhood experiences. So, at one level or another, it’s been going on for a long time­ and creating excessive acid all along.

For many people, early childhood represents some of the most fearful and vulnerable years. Have you ever wondered why you can’t remember much before age five or six? Many of those years are filled with fears and tears, mads and sads ­and how about the “bads”? Do you remember what happened when you were “bad?” Imagine the acid from those experiences. In addition to the punitive experience itself, imagine the acidity a child deals with by simply a) remembering such a “bad” experience or b) anticipating the possibility of another such “bad” experience…or c) both! Some “children” remember these events forever!

Some chronic emotions begin early:

 

“O dear white children casual as birds, Playing among the ruined languages,

So small beside their large confusing words,

So gay against the greater silences, Of dreadful things you did…”

It is during these vulnerable and unprotected years that we often plant eternal seeds of emotion that will yield an unwelcome harvest of acidic internal results, perhaps throughout one’s entire life.

The turmoil between parents and children, not to mention the conflicts between children and children, have been documented by many thousands of social science books and articles.

“Children begin by loving their parents; after a time they judge them;

Rarely, if ever, do they forgive them.”

So, let’s take a look at all of that emotion. Perhaps you are feeling a strong emotion. It could be any emotion.

Emotions Are Energy in Motion

 

First of all, emotions are energy in motion. When you are (e)motional, you are energetic, either in a positive or negative way. And if you are energetic, you are literally energy in (e)motion. You are now producing metabolic acids at a very high rate which is a waste product of such (e)motions.

The rate of acid production in an (e)motional state can be even greater than that of someone who is jogging or working out. So, your thoughts do become biological or metabolic acids that can make you sick, tired, depressed, angry and even too fat or underweight.

When you start producing acids with your thoughts, words and actions, what happens inside? First, you activate the alkaline-buffering systems of the body in order to neutralize these (e)motional acids. The body begins making a primary alkaline buffer known as sodium bicarbonate. It’s actually made from the blood in corporation with the cover cells of the stomach and during its production, it creates a waste product known as hydrochloric acid.

Hydrochloric acid is a poisonous acidic toxin and cannot remain in the blood. So it is dropped down into the gastric pits of the stomach. This is why people get upset stomachs or become constipated when they are (e)motional. This increase of sodium bicarbonate is critical in maintaining the alkaline design of the body, the pH of 7.365 for the blood, and for maintaining alkalinity of the interstitial fluids. If these acids, including hydrochloric acid, are not buffered and/or eliminated through the four channels of elimination, they can create serious health challenges in your body, mind, and spirit.

On the other hand, positive (e)motions, such as love, peace, hope, faith, joy, forgiveness and charity can be alkalizing to the blood and tissues. These (e)motions require far less energy and can cause you to be relaxed in your mind and stop the playing of some acidic toxic movie in your head. Students of higher consciousness know that you can even enter into a state of bliss wherein you have no thoughts and wherein you are producing no metabolic acid.

I Want Young Love

 

For myself, I have decided to call this wonderful place “Young Love.” That’s because I exercise and meditate every day. And I Love it! And it raises my level of consciousness and positive connection with the world. The connections between “Young” and “Love” are numerous. My name is Young, of course, but more importantly, being young is a term we normally associate with being youthful, energetic, open, optimistic, and filled with excitement. And the ultimate purpose of life is Love. And Love is the sweetest expression of life. So Young and Love go together.

To be sure, I Love my exercising and it Loves me back in terms of its gifts to me. I find myself Loving this state of bliss daily which I know is helping to alkalize my body. That is why I am addicted to­ why I Love­ this type of alkalizing exercise that I do every day. It’s called a “Positive Addiction”. I Love to have my friends and guests work out with me as I lead them through the steps. I teach them the Young version of Yoga. I tell them that it is known as “Younga Yoga”. They Love that. (Well, at least they laugh.) It incorporates proper breathing, stretching, toning, mediation, relaxation, and of course some sweating to remove yesterday’s dietary and metabolic acid and to help bring me into a state of happiness and bliss.

Through my personal and clinical research, I have found that maintaining the alkaline design of my body with an alkaline lifestyle and diet is the most important thing anyone can do to live a happier and more blissful life. Having an alkaline day is a way of life that I call “Young Living”. I guarantee you that what I call “Young Love” will go hand-in-hand with the goal of “Young Living”.

Are YOU Angry?

 

Now this next thought is very important! The negative (e)motions of anger, resentment, and fear­ being the most powerful and acidifying of all (e)motions­ are all highly acidic to the blood and tissues and in many ways are paralyzing to all bodily functions. Over time, the fear of the unknown is probably the most powerful and acidic of them all. Fear is so devastating to the body that even if you’re on an alkaline diet, overcoming a serious health challenge is practically impossible.

In such a dire case, with what may seem to be little or no improvement, you might be wondering if the pH Miracle Lifestyle and Diet may not be working. You may be asking, “What else am I not doing that I should be? How come I feel the way that I’m feeling? I’m eating the right way, I’m drinking the right alkaline electron rich water, but I can’t seem to achieve the type of extraordinary health and energy that I’m seeking.”

In most cases like this, when you are eating and drinking correctly, it will come down to your negative acidic (e)motions or thoughts that are holding you back from achieving extraordinary health, fitness, mental clarity, happiness, and bliss. However, keep this in mind:

When you’re eating an alkaline diet and you are doing everything you know how to do, and yet you are overwhelmed with worry, doubt and negative (e)motions, thank God you’re eating an alkaline diet! If your body were not seriously in the alkaline direction, you might very well be experiencing a struggle for your life. Your acidic (e)motions can literally kill you. So the alkaline diet is the saving grace. Knowing that should give you the positive hope that you can hang on, get through the emotional stress, and still come out physically and mentally able.

Hope and positive expectations are always the key, and knowing that you are on an alkaline diet should aid significantly in boosting your hope and confidence. You can live without food for forty days. You can live without water for about four days. You can live without air for maybe four minutes. But you cannot live without hope and love at all. Hope, love, positive expectations, confidence in what you are doing, and trust in your own good intentions ­this is the key, and that’s what the pH Miracle Lifestyle and Diet will do for you. It will give you hope!

The Leading Cause of Death in the World?

 

The leading cause of death in the world today is said to be heart attacks. But people are really having “thought attacks,” NOT “heart attacks.” There are studies showing that over 80% of all heart attacks are (e)motionally triggered. I have said that people don’t die of a heart attack. They die of a thought attack that medical science simply refers to as a heart attack because that’s the end result.

And if you have wondered if you can die from a broken heart, the answer is absolutely! And the cause? Acids from energy in motion or (e)motion. The loss of a cherished love one can increase your metabolic acids from the (e)motion to the point that it can stop your heart from beating and pumping life-giving blood throughout your blood vessels. And we all know or should know that life and death is in the blood, the most important “organ” of the body.

So let’s take a moment to talk about what I do when I have a client who’s in a highly negative acid-forming (e)motional situation and all the body fluids, including the blood, will show a decline in the pH even when this person has been eating an alkaline diet.

In order to buffer the acid forming (e)motions, the client will have to hyper-alkalize the blood and then the tissues in order to bring the body back into alkaline balance. When the client is hyper-alkalizing, the pH of the urine will increase into the high 8’s and even into the 9’s. Hyper-alkalization is necessary in order to overcompensate for the negative acidic producing (e)motions and to bring the body back to health, energy, vitality, hope, peace, harmony and love.

So, does a person have a fair chance of healing themselves from a degenerative disease or dis-ease like heart disease or cancer? Can you ever achieve a state of blissful happiness? Can you recover from the devastating shock of a loss or from having been diagnosed with a scary-sounding health challenge? I say “absolutely, YES!” And I just told you how.

Given the importance of (e)motions in cancer or acidic causation, etc., I have been particularly interested in the unique biochemistry of the “reptilian brain” which includes the Amygdala, a part of the brain associated with the senses and emotions and their storage or memory. Acid or sugar specifically activates the areas of the Amygdala. I have often wished that our traditional medical industry would spend some of their billions of research dollars checking out and verifying for the world what I have demonstrated for years that the pH Miracle electron-rich alkaline Lifestyle and Diet would be much more calming to the lower (e)motions of grief, shame, guilt, anger, fear, etc­., responses of the reptilian brain­ as compared to a toxic acidic chemical drug.

A chemical acidic drug may temporarily calm a person down, but it will also inhibit the entire spectrum of normal and healthy functioning of the Amygdala. I am assuming here that most of us still value and are interested in the healthy functions of socialization, sexual attraction, and the enjoyment of the myriad of feelings associated with home and hearth. All of these wonderful human experiences and memories are also functions of the Amygdala every bit as much as the feisty adrenal functions responding to “fight and flight.”

In our attempts to find a chemical drug to treat almost everything, we (more often than not) create more problems than we eliminate­ one step forward and two steps backward. I know that attention deficit problems (ADHD) respond to an alkaline regimen….and hyperactivity is an Amygdala function. So it follows that an alkaline lifestyle and diet would produce less overall adrenal and most important Amygdala “stress” as well (really just the fight or flight mechanism by another name).

The pH Miracle electron-rich alkaline lifestyle and diet is calming to the mind and thus calms the negative (e)motions or energy in motion. This appropriate calming of the Amygdala function produces less “stress.” And, with less “stress” you have less “acid.” And, with less “acid” you have less sickness, dis-ease, so-called disease, depression and unhappiness. Understand NOW?

Can our (e)motions cause cancer?

 

I have said that cancer is a four letter word­ ACID. When you are doing negative acidic (e)motions, such as anger, revenge, hate, sadness or depression, you are creating metabolic acids that can cause ANY and ALL cancerous conditions across all body tissues. If metabolic acids are not removed via urination, perspiration, defecation or respiration (menstruation -why women live longer), then they are delivered to body tissues. When constant excess acid from negative (e)motions are poured into the body tissues, the body tissues will degenerate causing a cancerous condition. Pharmaceutical companies are creating drugs addressing symptoms that may give you the illusion of feeling better, but they DO NOT deal with the causative metabolic acids from eating, drinking and negative acidic (e)motions. This can only lead to more physical and (e)motional pain and unnecessary suffering.

Young Life, Young Energy and Young Love

 

When you are in a negative (e)motional state, it can become impossible for you to heal your serious degenerative or acidic challenge. But, I will say this: if you are willing to commit to change and begin the alkalizing process, even if you are not completely out of your state of fear, anger, depression or anger, you will begin to put more “Young Life,” “Young Energy,” and “Young Love” into your mind, body and spirit.

I have found over the years that when you start feeling better, you start thinking better. And when you start thinking better, you start doing better. So, you don’t have to have your (e)motions completely under control in order to start losing weight, feeling better, reversing a serious illness, having more sustainable energy and to start being happy and more spiritually connected.

When you start the pH Miracle Lifestyle and Diet program, you are then making a conscious decision to try to do a little better. And, when you get on this healing path that leads to Young Living, Young Energy, and Young Love­ this gradual alkalizing process­ you start having those little and then those big pH miracles. You start feeling better and you start thinking better. And, when you start feeling and thinking better, you realize at some point that you have forgotten your depression and your sadness. Feelings of anger have disappeared ­and even what you were upset about. You soon forget what you were fearful about in the first place.

Why? These changes come about because you feel so good. You are rewriting your genetic expressions with your positive (e)motions. You are taking your alkalizing eraser and erasing all your past life’s negative emotions. On the pH Miracle Lifestyle and Diet your (e)motions or energy in motion will finally be under your control. You will become the master of your mind, body and spirit. You will be living an alkaline lifestyle and diet full of energy, happiness, bliss and love. You will be living and breathing “Young Love.”

To learn more about the affect of negative and positive (e)motions on the brain and body and to learn more about “Young Living” “Young Energy” and “Young Love” read, The pH Miracle, The pH Miracle revised and update, The pH Miracle for Diabetes, The pH Miracle for Weight Loss and The pH Miracle for Cancer – http://www.phoreveryoung.com

Pathological Blood Coagulation and the Mycotoxic Oxidative Stress Test

 Robert Young PhD

Naturopathic Practitioner – The pH Miracle Ti Sana Detox Medical Spa and Universal Medical Imaging Group

Abstract

Historical analysis suggests that conventional understandings of Disseminated Intravascular Coagulation (DIC) may be misguided; further examination may be necessary.  Here, a theoretical analysis provides an alternative explanation for DIC pathology; it is suggested that the cause and mechanics of DIC are largely due to the proliferation of several intravascular microforms and their associated metabolic toxic acidic waste products — Mycrozymian Acidic Toxins (MAT) and Exotoxic-Mycotoxic-Producing Microorganisms (EMPO).  The Mycotoxic Oxidative Stress Test (MOST) is presented here as an easy, inexpensive and non-invasive alternative to conventional measurements for the detection of intravascular  acidic toxins, DIC  and oxidative stress.

Introduction and Historical Perspective

More than 150 years ago, British physician T. W. Jones asked the question, “Why does the blood circulating in the vessels not coagulate?”[1]  though a general answer to this question is now obvious, the biochemical mechanisms involved in how the blood coagulates (clots) are complex and varied, and all the intricacies have not yet been explained. A. Trousseau, recognized that the blood of cancer patients is in a hyper-coagulable state in the process of coagulation, even while confined in the blood vessels.[2]  The name given to this discovery is still in use today, as “Trousseau’s Syndrome.”[2]  Early in his career, Rudolph Virchow, the Father of Pathology, was interested in thrombosis and embolism.  He speculated that intravascular blood could be altered so it would clot as a result of a stimulus too weak to clot normal blood.[3]  In 1856 Virchow delivered a lecture setting forth this concept.

Although the concept of partial clotting within vessels reaches back to the beginnings of modern medicine, much of the discovery of its biochemical mechanisms – the activation of clotting factors – has been left to chance.  The admission of a patient to the hospital with an unceplained bleeding disorder challenged researchers to discover the cause of hemorrhaging.  Analysis of blood from normal persons helped in the study of the patient with the blood disorder. A new clotting factor was hereby discovered which was missing from the  patient’s blood.  For this reason, several clotting factors have been named after the individuals in which they were missing: e.g., Christmas factor (factor IX)[4], Hageman factor (factor XII)[4].

In this article, the causes of pathological (intravascular) clotting will be described, as will various methods of detecting this condition, especially a blood test I call the Mycotoxin Oxidative Stress Test (MOST).

The Mechanics of Blood Coagulation

Blood clotting is a highly detailed chemical-mechanism involving many distinct components.  The problem for the hematologist hs been to understand it at the biochemical level.  Undoubtedly, efforts to fully understand blood clotting will continue for many more years.

Recalling Antione Bechamp’s[8] and Gunther Enderlein’s[9] research into the sub cellular living elements and combining this with what is known of colloidal flocculation[6], it is suggested that the clotting of blood begins with the end-linking (polymerizing) of the fundamental protein unit called by Bechamp the microzyma[8].  A chain of these living units constitutes fibrinogen, which is still dispersed 9micro-hetergenous0 in the blood, and it may or may not be further processed.  If processing continues, it will be either by continued end-linking or by cross-linking.  End-linked fibrinogen is referred to here as fibrin monomer, which I have suggested is a repair protein also dispersed in the blood. Due to a number of blood clotting factors, the process may continue until the excess fibrin monomer and/or until fibrin becomes excessively end-linked.

Cross-linking the polymerized strands to form a three-dimensional network results in what is called the hard clot (fibrin – the major protein of clotting blood).  Factor XIII, which instigates the forming of these blood networks. is always present but latent in the blood, and must be activated before the formation can occur.  Persons who are producing fibrin monomer or excessively linked fibrinogen are said to be in a hyper-coagulable state, while those having diminished  ability to form clots are in a hypo-coagulated state.  It is the activation of the colloidal clotting factors which is so complex.  Blood clotting may occur through many pathways and be initiated by many different stimuli.  Regardless of initiation factors, the process is a sequence of events in which the activation of one factor triggers another, until, after a series of discrete steps, fibrin is formed.

When blood is clotted prematurely, and the factors involved are consumed (incorporated into) the body recognizes a deficiency of clotting agents and generates more.  Thus, people with a tendency to clot excessively will alternate between a hyper coagulable state and a hypo-coagulatable state.  When in the hypo coagulated state, such people hemorrhage until the deficient clotting factors are replaced.[4]  When only fibrin monomer or excessively linked fibrinogen is formed (no cross-linking), it is quite subtle and may go undetected.  It may be detected by a change in blood viscosity (sedimentation rate), by the Mycotoxic Oxidative Stress Test (described later), or by other more subtle means.  If strands of fibrinogen are cross-linked, however, a suggicient amount of insoluble precipitate of fires may result, and these can be detected microscopically using a phase contrast and dark-field microscopy in prepared slides of fresh tissue or blood.  An excessive formation of fibrin leads to  an impairment in circulation, and eventual organ failure usually results.[5]

With this background, we are in a position to consider a standard medical term: disseminated intravascular coagultion (DIC).[6]  This term encompasses the hyper coagulable state, i refer to as pathological blood coagulation which consists of both insoluble and excess dispersed polymers of colloidal proteins.

Key Ingredients of Pathological Blood Coagulation

Before discussing DIC in more detail, it si necessary to introduce its fur important ingredients according to this view – mycotoxins, endotoxins, exotoxins, and tissue factor.  Any of these elements, or any combination of them, can play a major role in initiating unwanted DIC.[6]  However, mycotoxins or the acids from yeast have been found to be the underlying element which instigates and intensifies the participation of the other three.[6]  Each will now be described in turn and brought into the clotting picture.

(Micrograph 1: left, shows normal hyper-coagulated blood in a healthy blood clot sample and right, hypo coagulated blood in an unhealthy blood clot sample)

Mycotoxins and Metabolism by Fermentation

As discussed in the main text of my published book, Sick and Tired book[7 ]. acidification of blood and body tissues and organs and the accompanying lack of oxygen lead to pathological metabolic fermentation, which is carried out primarily by yeast and mold.  Such pathological microorganisms, or their precursors, ar inherent to the human body and to all higher organisms.  Their precursors according to Bechamp, the microzymas, carry on a nominal and homeostatic fermentation themselves. under healthy conditions.[8]  The primary function of yeast and mold is to decompose the body upon the death of the animal or human organism.  Their premature overgrowth indicates a biochemical environment akin to death.  During pathological metabolic fermentation, high concentrations of several acidic substances called mycotoxins are created.  They are highly damaging, always acidic, metabolic products.  If not immediately buffered by specific antioxidants, such as hydrogen peroxide and the hydroxyl free-radical, mycotoxins can seriously disrupt the physiology by disrupting normal metabolism and by penetrating blood and body cells and poisoning them.  As will be seen, they interact with many of the mechanisms for DIC in various pathological symptomologies.

In my published article called The Finger on the Magic of Life: Antoine Bechamp, 19th Century Genius (1816-1908),  I discuss pleomorphism in some detail.[7] Understanding this phenomenon – the rapid evolution of microorganisms across traditional taxonomic  lines is helpful in getting a complete picture of DIC.  Briefly stated, collodial living microzymas evolve intracellularly into more complex forms (microorganisms), beginning with a healthy primitive stage comprising of repair proteins.  As the disease condition worsens, morbid intermediate forms (filterable bacteria or viruses, cell-wall deficient forms and full bacteria) develop from repair proteins, or directly from microzymas.  A third macrostage comprises the commonly recognized culminate microorganisms which are yeast, fungus to mold.  In terms of pleomorphism, all of these microorganisms represent a single family of variously functioning forms.[8]  The culminate forms produce the lions share of acids, which are mycotoxins and the primary focus of my research.[7][8][9]  For convenience, bacteria, yeast, fungus and mold that produce acidic metabolic wastes and protein cellular fragments called exotoins, endotoxins and mycotoxins will here be referred to collectively ash EMPO, or exotoxic, mycotoxic-producing microorganisms.

What follows is a shortened description or the description and origin of several exotoxins and mycotoxins, referred to collectively microzymian acidic toxins of MAT, which are involved in the processes leading to DIC.  The bio-effects, or the pathology of cellular fermentation, of these toxic metabolites are know as mycotic illness, mycotoxicosis, or mycotoxic stress as seen in the MOST and described and published by Dr. Bolin in the 1940’s.[10]

One such metabolic product is acetyl aldehyde, which is formed by  cellular breakdown of food, especially carbohydrate and the birth of  EMPO.  Acetyl aldehyde can also break down into a secondary substance know as ethyl alcohol.  Although acetyl aldehyde presents an immediate hazard to health and well-being, nature has provided a means of buffering of neutralizing this acidic by-product of cellular digestion and fermentation almost as soon as it is created.[11] The controls of acetyl aldehyde (and ethyl alcohol) are the sulfur amino acids, cysteine, taurine, methionine and the peptide glutathione which is found in red blood cells and almost all cells utilizing oxygen.[12]  In an attempt to buffer or neutralize MAT, the body will also bind or chelate both fats and minerals to them.[12]

Another member of the MAT family is uric acid, which is formed by the digestion of protein and the creation of EMPO.[13]  Uric acid can also break down into secondary substance, on of which is alloxan.[14] This has been shown to damage the insulin-producing pancreatic beta cells leading to diabetes [Refer to Tables 1 and 2]

A shortage of alkalizing nutrients or an excess of MAT initi­ates an immune response in which a special class of free radicals which I call microzymian oxidative buffering species (MOBS) are released.[15] These oxygen metabolites carry unpaired electrons and are intended to disrupt bacteria, yeast, fungus and mold, and buffer exotoxins, endotoxins, and mycotoxins. Current medical savants believe that they can disrupt just about any­thing they contact, including healthy cells and tissue: this is not accurate. The fact is that MOBS carriers a nega­tive surface-charge and repel healthy cells, which also have a negative surface-charge. [16] It is the positively surface-charged bacteria, yeast/fungus, mold, exotoxins, endotoxins, and myco­toxins that MOBS bind too.[17]  This aspect gives some insight into autoimmune phenomena, which are not, as is often maintained, the result of an overburdened immune system. They result either as a side-effect of the immune system’s attempt to remove foreign or toxic ele­ments, or as a direct attempt by the immune system to remove cells or tissue rendered useless or disturb­ing to the body by MAT.

In every degenerative symptomatology I have studied, I have found excessive MAT and MOBS (see Tables 1-3). Some of these degenerative symptoms and their underlying disease conditions, including cancer are described in my recently published paper on a deficiency on alkaline nutrition and cancer. [15] But the fact that myco­toxins cause harm to humans and other animals is purely a secondary effect, since, as noted, the prima­ry function of the microorganism is not to cause illness. We know from the fossil record that pleomorphic microforms existed long before animals.[19] In fact, humans and animals developed in terms of micro­organisms.[20] The reverse, however, is not true. Since micro­organisms appeared first in the developmental sequence, they are not physiologically aware of humans and animals. There is much evidence that human and animal physiologies are highly aware of, and respond to MAT – these acidic compounds signaling the presence of bacteria, yeast, fungi and/or mold or  EMPO.[21].

Endotoxins

Also involved in the process leading to DIC are endotoxins, substances endogenous to symptogenic (i.e., “pathogenic” in orthodox terms) bacteria. Endotoxins are a family of related substances having certain common characteristics, but differing from one bacterial form (or strain) to another. Endotoxins are lipopolysaccharides (LPS). LPS form a widely diversified group because of (1) the number of long- chain fatty acids composing lipids; (2) the number of individual sugars as well as their modes of linkage to one another; (3) the branching of sugar chains; and (4) the number of possible arrangements of these units. Endotoxins also contain proteins, further com­pounding the structural diversity.[22]

One theory on endotoxin states that its purpose is to act as a semi-permeable membrane for the bac­terium, limiting and regulating substances entering the organism.[22] Endotoxin resides solely on or near the interior surface of the cell membrane and is shed into the surrounding medium only upon the death of the bacterium. Thus, as these microforms die off, or are lysed by bodily activity, endotoxin is released. (This fact may well be an explanation for the Herxheimer reaction, in which a patient becomes worse following the administration of toxic drugs or other forms of treatment that drastically alter the associated organ­ism.[23]) Another endotoxin theory states that LPS are a constituent of the membrane, and as the organism grows, endotoxin fragments are repeatedly sloughed off into the medium. This phenomenon has been observed in the digestive tract.[24] Since bacterial translocation into the blood is not only possible but common where epithelial hyperpermeability exists, one can assume that the process will continue there. Both theories may be correct if we think of the first one as true of “adult” forms, and the second as true of newly developed and expanding ones.

Basic to the structure of an endotoxin is the lipid common to all forms, designated lipid A, to which is attached a “core” polysaccharide, identical for large groups of bacteria. To the core polysaccharide is attached the O-antigen, consisting of various lengths of polysaccharide chains which are chemically unique for each type of organism and LPS. These chains pro­vide endotoxin specificity.[25] Experiments conducted over many years indicate that most, if not all, of the toxic effects of an endotoxin may be attributed to the lipid portion, and it is sometimes used per se in experiments rather than the entire molecule.[26] An important additional feature of lipid A is its phos­phate content. Each phosphate group carries a nega­tive charge, and since lipid A is a rather large mole­cule, it provides, essentially, a negatively charged sur­face. The importance of this will be seen shortly.

Exotoxins

These are the metabolic excretions of bacteria. While endotoxin’s ongoing effect is, in a manner of speaking, in the background, exotoxins, like myco­toxins, present a double-edged sword. Not only do they initiate DIC, but they produce, or influence the body to produce, the various and numerous infec­tious symptomatologies, such as typhoid fever, diph­theria, etc. (See “Vaccination Reconsidered” in Section 4 of the Appendix of Sick and Tired for details on the action of diphtheria toxin.)[7] By comparison, mycotoxins not only initiate DIC, but there is much evidence to sug­gest that they produce, or influence the body to pro­duce, degenerative symptomatologies, such as arthri­tis, diabetes, etc., and cancer and AIDS as well.

Tissue Factor

Crucial to the understanding of DIC is recogni­tion of the role of tissue factor (TF), formerly known as thromboplastin. This transmembrane lipoprotein exists on the surface of platelets, vas­cular endothelial cells, leukocytes, monocytes, and most cells producing EMPO.[27] It plays a major role in several biochemical mechanisms leading to DIC.

TF is the primary cell-bound initiator of the blood coagulation cascade. Its gene is activated in wound healing and other conditions. By itself it is capable of initiating clotting, but also becomes active when complexed with factor VII or activated factor VII (Vila).[28] TF has been described as the receptor for factor VII because of the close association between the two proteins and because it causes a shape change (conformational) in factor VII, allowing it to attain activity. Both factor Vila and the TF/VII com­plex activate factors IX and X, which initiate the clotting cascade and the formation of thrombin.[29]

Development of Disseminated
Intravascular Coagulation
(DIC)

DIC Induced by MAT and Tissue Factor

An infusion of toxins into the blood has a direct effect on TF gene expression in leukocytes. Contact of MAT, endotoxins (lipid A), or exotoxins with leukocytes, activates proteins that bind to DNA nucleotide sequences, thereby activating the TF gene.[30] (See Tables 4-6.)

Endothelial cells damaged in culture by exotoxins, endotoxins, or mycotoxins attract polymorphonuclear leukocytes (PMNs), which adhere to the damaged cells. Once the leukocytes are bound, they can still have their TF gene activated if it hasn’t yet occurred, and they may release MOBS in response to toxins and to organisms of disease, possibly creating further dis­turbances. (Cellular disorganization then releases acti­vating proteins into the blood, which is discussed in more detail later.) Research shows that exotoxic and mycotoxic stress resulting in bound PMNs can be blocked by “antioxidants.”[31] These might better be called anti-exotoxins or antimycotoxins. Both observa­tion and study have led the author to conclude that cellular disorganization is initiated and primarily caused by fermentation pathology, not, as is the cur­rent belief, by the MOBS, or free radicals, generated to destroy toxins and microorganisms. MOBS or free radicals, because of their negative charge, are released to chelate or bind EMPO and MAT. It is suggested by current savants that free radical tissue damage is the secondary, “shotgun” effect of intense immune response to EMPO toxification and MAT-damaged cells. This could not be the case since healthy cells or their membranes carry a negative charge and would resist any electromagnetic attraction because of simi­lar charge. The concentration and instability of MAT generated in a compromised terrain, as opposed to the fleeting existence of free radicals, especially exoge­nous ones, also lead to this conclusion.

Endothelial cells grown in culture can be induced to express tissue factor. In one experiment, no procoagulant activity could be detected in the absence of toxins. However, the addition of mycotoxins from Aspergillus niger or Micrococcus neoformas (Mucor racemosus Fresen) resulted in procoagulant activity which reached a maximum in four to six hours and was dose-dependent. The same experiment was applied using E. coli and Salmonella enteritidis endo­toxin with a similar result.[32] A single intravenous injection of a mycotoxin from Aspergillus niger into experimental animals resulted in circulating endothelial cells within five minutes. In other exper­iments with the mycotoxin, detachment of endothe­lial cells from the basement membrane was noted.[33] (See Table 8.)

Removal of endothelial cells has dire conse­quences from two standpoints: First, the surface of these cells is covered with a specific prostaglandin (PGI2) known as prostacyclin. If blood contacts a surface not covered with PGI2, it will clot. For example, surfaces devoid of this prostaglandin are formed whenever a vessel is cut or punctured. An abrasion or other injury may also expose a surface on which PGI2 is lacking. The removal of endothelial cells by exotoxins or mycotoxins creates a surface devoid of PGI2, leading to blood clotting (see Table 7). Secondly, disorganization of endothelial cells cre­ates increased levels of EMPO and MAT which are attracted to an exposed surface (basement mem­brane) which expresses a negative charge. This also leads to clotting.

DIC Induced by Electrostatic Attraction

It was discovered in 1964 that blood will clot sim­ply from contacting a negatively charged surface.[34] Previously it was believed that the clotting process comprised a cascade of enzyme activity in which one activated the next, etc. The discovery that blood could be clotted simply by contacting a negatively charged surface ruled out the purely enzyme hypoth­esis. Only some of the known clotting factors have been shown to be enzymes.[35] As a result of this sur­prising discovery, detailed research was conducted in an attempt to describe the process. In some experi­ments, the negatively charged surfaces of selected, finely divided, inorganic crystals, including alu­minum oxide, barium sulfate, jeweler’s rouge, quartz, and titanium oxide, were considered.[36]

The clotting factor eventually shown to be activat­ed when whole blood contacted negatively charged surfaces was factor XII, also known as the Hageman factor. This is a positively charged protein migrating in an electric field (electrophoresis) toward the anode.[37] It is believed that factor XII is normally in the shape of a hairpin which binds to the negatively charged sur­face at the bend. Electrostatic attraction forces the two arms to lie flat on the surface, thereby exposing the inner faces and activating the molecule.

It was discovered that if the negatively charged particles were smaller than the clotting factor itself, activation was minimal. Or, if the concentration of clotting factor was too great, there was little or no activation.[38] Both of these observations indicated that the process was one of electrostatic attraction between the negatively charged surface and the clot­ting factor, which is a “basic” protein, that is, posi­tively charged.[39]

Activation of factor XII allows the activation of factor XI, which then activates factor IX. Thus, the blood clotting cascade continues to the formation of fibrin in the normal manner.[40] However, due to a series of activations begun by contact of factor XII with a negatively charged surface, trace amounts of factor Xa also show up in the blood. Factor VII is activated to Vila by factor Xa. Factor Vila then acti­vates factors IX and X, leading to the formation of thrombin. Factor Xa, with co-factor Va, continues the clotting cascade until fibrinogen is activated, leading to fibrin formation.[41] (See Table 5.)

As discussed earlier in terms of prostacyclin, beneath endothelial cells is another surface—the basement membrane. Called the extracellular matrix, it is a thin, continuous net of specialized tis­sue between endothelial cells and the underlying connective tissue. It has four or more main con­stituents, including proteoglycans (protein/polysac- charide).[42] The removal of endothelial cells by’MAT exposes this membrane, which is negatively charged by virtue of its sulfonated polysaccharides in the pro­teoglycans. This brings a reduced negatively charged surface into direct contact with the blood, which activates factor XII and the clotting cascade.[43]The positively charged toxic components of MAT also activate factor XII, as do disturbed disorganized cells, yeast/fungus cells, moldy cells, and the phos­phate groups in the lipid A component of endotoxin. (See Tables 2-5.)

To summarize this section, exotoxic, mycotoxic, and oxidative stress resulting from the overgrowth of bacteria, yeast/fungus, and then mold, has multiple actions, all leading to disseminated intravascular coagulation:

MAT activation of tissue factor gene in leukocytes; subsequent activation of factors VII, IX, and X, resulting in the blood clotting cascade.

MAT activation of tissue factor gene in endothelial cells, again leading to the clotting cascade.

MAT damage to endothelial cells, resulting in neu­trophil attraction, with TF gene activation and generation of MOBS, which, in turn, neutralize MAT, protecting healthy endothelial cells or the basement membrane and supporting the janitorial services of the leukocytes.

Removal of negatively charged endothelial cells by positively charged exotoxins, endotoxins, and mycotoxins, creating a surface devoid of PGI2, also exposes the negatively charged basement membrane, leading to the activation of factor XII and initiation of the clotting cascade. Positively charged components of EMPO, exotoxins and mycotoxins, and several other elements, including the lipid A component of bacterial endotoxin, also activate factor XII and the clotting cascade.

Endothelial Cells as Antithrombotics or Procoagulants

Normal, resting (unstimulated) endothelial cells show antithrombotic activity in several ways: (1) by the inhibition of prostacyclin (platelet adhesion and aggregation); (2) the inhibition of thrombin genera­tion; and (3) the activation of the fibrinolytic system, leading to clot lysis.[45] We will take a brief look at the thrombin aspect.

On the surface of endothelial cells is a protein called thrombomodulin, which acts as a receptor for thrombin. When bound to thrombomodulin, throm­bin can activate protein C. Activated protein C then catalyzes the proteolytic cleavage of factors Va and Vila, thereby destroying their participation in blood clotting. Thus thrombin, which normally activates fib­rinogen, plays an opposite role in this case and inhibits the clotting process.[46,47] (See Table 7.)

On the other side of the coin, the endothelial cell becomes a procoagulant agent when acted on by cer­tain lymphokines, such as interleukin-1. Not only can interleukin-1 induce TF gene expression, but it also suppresses transcription of the thrombomodulin gene in endothelial cells. As in other situations, the lymphokine-activated endothelial cell expresses TF on its surface as a result of TF gene activation. This leads to the production of thrombin and the trigger­ing of the blood clotting cascade.[48] (See Table 5.) Many lymphokines also stimulate adhesion of leuko­cytes to endothelial cells damaged by MAT, resulting in recycling of the cells by MOBS, as described later.

DIC Induced by Intracellular Exotoxic, Mycotoxic, Oxidative Stress by Bacteria, Yeast/Fungus and/or Mold

Any cell which has gone from an oxidative to a fer­mentative state can biochemically cause macrophage production of the lymphokine tumor necrosis factor (TNF). This protein has been shown to activate the gene for TF in fermenting cells, which are so behaved due to morbid evolution of bacteria, yeast/fungus, and then mold.[49,50] In the author’s view, a cell having been switched entirely to fermentation metabolism as a result of a physical or emotional disturbance of that cell, is what constitutes cancer (see Tables 5 and 13). (One might argue that this definition does not fit all “forms” of cancer, such as leukemia, for example. This is because leukemia is not cancer, but an immune response to the rise in EMPO and MAT in the body, and a relatively easy compensation to correct.)

The surface of many disorganizing or fermented cells (cancer cells) is characterized by small projec­tions in the plasma membrane which pinch off, becoming free vesicles containing toxins as well as TF complexed with factor VII. These vesicles can aggre­gate and/or lodge anywhere, ultimately releasing their contents. Also, the presence of excessive amounts of TF/factor VII complexes on the surface of fermented cells allows the formation of a fibrin net around the cell and around the entire mass of cells (tumor). This seems to be an attempt by the body to encapsulate and contain the mass. However, fermented cells do escape from the primary fibrin net, perhaps due to some electromagnetic effect, and become free-float­ing in the circulation. They may thus lodge elsewhere and instigate the fermentation of other cells by fungal penetration or by poisoning them and provoking a morbid evolution of their inherent microzymas.

Because of the surrounding fibrin net, these mobi­lized fermenting cells are protected from collection by the immune system while in transit.[51,52] (See Table 4.) The blockage or dissolution of fibrin net forma­tion by an anticoagulant such as heparin allows freed, fermenting (metastasizing) cells to be dismantled by natural killer cells and other immune cells (see Tables 5, 12 and 13).

DIC Induced by MAT/EMPO and Immune System Response (Release of MOBS)

Unsaturated fatty acids are highly susceptible to EMPO as well as MAT. Linoleic acid, a long-chain fatty acid present in white cells, has 18 carbons and 2 unsaturations. Subjected to MAT, linoleic acid binds the exotoxin, endotoxin, or mycotoxin, there­by forming an epoxide at the first unsaturation.[53] Research has revealed that this compound, named leukotoxin, is highly disturbing to other cells. It caus­es platelet lysis, thereby releasing TF and initiating DIC.[54] (See Table 10.) The fact that MAT result in fermented fats lends further credence to the sugges­tion that the initial and primary degenerative damage to structures and substances in the body is caused by exotoxins and/or mycotoxins, and that damage by MOBS, or by other free radicals, is not possible.

Another mechanism leading to DIC is the release of a special glycoprotein, sialic acid, from the terminal ends of cell-membrane polysaccharides, where it is always found. Polysaccharides play a highly significant role in biochemical processes, with both enzymes and membrane receptors recognizing various groupings of specific sugars linked in highly specific ways.

Immediately preceding the release of sialic acid in the polysaccharide chain is the sugar galactose. The sialic acid/galactose arrangement is utilized as a biolog­ical indicator of cellular and molecular aging. As cells age, sialic acid is naturally expressed from the terminal ends of polysaccharides, thereby exposing galactose. A membrane-bound enzyme from the liver, galactose oxi­dase, recognizes galactose and eventually disorganizes it, disrupting cell function integrity and hastening demise. Aged red blood cells, which have expressed a significant amount of sialic acid, are removed from the blood by this process. (I theorize that the biological ter­rain may be at work in normal cell aging. That is, the rate at which sialic acid is expressed is determined by the levels of corrosive acids in the system and the body’s ability to remove them, although there are no doubt intracellular factors at work as well.)

I suggest from my years of  clinical research  that cellular breakdown is compounded by the fermentation of the galactose by the microzyma. This is a process that begins from within and not necessarily from without. Not only does this action create more sialic acid, it creates other toxic waste products such as acetic aldehyde, alcohol, uric acid, oxalic acid, etc. The increase in cellular disturbances and fermenta­tion of the galactose creates biochemical signals for more galactose oxidase. This leads to greater cellular disorganization and developmental morbidity, espe­cially in the red blood cells, and a rise in the level of detrital serum proteins, which encourages clotting. From this perspective, diabetes, arthritis, atheroscle­rosis and other symptomatologies become more clearly “degenerative” (see Tables 2-5, 12 and 13).

Fibrinogen is a rather elaborate protein having the structure of three beads on a string. Expressed on the end beads is sialic acid, which indicates the beginning of disorganization of the fibrinogen and a declining negative charge to the positive. Prior to the declining charge and the expression of sialic acid on the end beads, fibrinogen, which is negatively charged, will not polymerize the healthy blood due to mutual repulsion. However, fibrinogen will poly­merize to damaged cells, EMPO, MAT and other positively charged areas of the body for repair pur­poses. Thus, as more and more sialic acid is expressed, there will be a significant reduction in the charge of the fibrinogen, acting as the primary requirement for the polymerization of fibrinogen (hypercoagulable state). The resulting polymer, fib­rin monomer, is the protein chain used in the repair of cells and clotting of blood.[55] End-linking will take place after the release of sialic acid (positive charge) by whatever means.

With this background, it is interesting to note that blood taken from persons suffering from anxiety is expressing sialic acid from fibrinogen, and is halfway toward clotting. Hormones released during anxiety states are easily fermented, giving more momentum to MAT and thereby resulting in this important change in fibrinogen. It leads to a clotting pattern characteristic of anxiety stress, and is readily identi­fied in the MOST. As can be seen in this picture, the pattern is a “snowstorm” of protein polymeriza­tions measuring from 2 to 10 microns.

allergiesbefore

 

 

 

 

 

 

 

[Micrograph 2: An Anxiety Profile showing a ‘snowstorm’ of 2 to 10 micron protein polymerizations starting from the center of the clot and moving out towards the edge]

As mentioned earlier, despite the attempt by the body to neutralize EMPO and MAT, an excess will initiate the release of MOBS by immune cells. A major MOBS is superoxide, designated chemically as O 2. It may exist alone or be attached to another ele­ment, such as potassium (KO’2) or sulfur (SO). Again, however, nature has provided a means of pro­tecting healthy cells—their negative charge[1]. Another protection against superoxide is the enzyme superox­ide dismutase (SOD), also found in all healthy cells.

A second member of the MOBS family is hydro­gen peroxide (H202). This molecule is very unstable and tends to react rapidly with other biological mol­ecules, damaging them. The release of hydrogen per­oxide in the body is a response to the overgrowth of decompositional organisms in a declining pH (com­promised biological terrain). The control for healthy cells against hydrogen peroxide is their negative charge and the protective enzyme catalase, one of the most efficient enzymes known.

When leukocytes and other white blood cells are stimulated by the presence of bacteria, yeast/fungus and mold, they treat these organisms as foreign par­ticles to be eliminated. During and prior to phagocy­tosis, the foregoing oxidative cytotoxins, along with the hydroxyl radical (OH’), are generated and released specifically for neutralizing microforms or harmful substances. This release is referred to as an “oxidative burst.” As a result of fermentation and the production of exotoxins and mycotoxins that fer­ment galactose from cells, the immune system is activated. An oxidative burst is released to neutralize the morbid microforms and mycotoxicity.[56] Like other biological processes faced with constantly alarming situations, the continued release of MOBS can get out of control. This may damage endothelial cells, the basement membrane, or other body ele­ments, and this activates fibrinogen to fibrin monomer (repair protein), leading to DIC [see Table 9]. Interestingly, the white blood cells capable of neutralizing MAT through MOBS production are the same ones capable of phagocytosis, the process by which foreign matter, waste products and microor­ganisms are collected and dumped in the liver.[57]

To summarize this section, pathological microforms and their acids create DIC by a number of pathways:

Leukotoxin (linoleic acid bound to mycotoxin) is highly toxic to cells. It causes platelet lysis, there­by releasing TF and initiating DIC.

The expression or release of sialic acid residues from healthy cells that have been disturbed allows for the fermentation of galactose, creating exotox­ins and mycotoxins, biochemically activating galactose oxidase, which further disturbs and dis­organizes healthy cells. This cycle loads the blood with debris.

EMPO and MAT disturb fibrinogen, which releas­es sialic acid and reduces the charge, allowing it to polymerize into fibrin monomer and fibrin nets.

The presence of exotoxins, endotoxins, and myco­toxins and their poisoning of cells activates the immune system. White blood cells generate MOBS (e.g., superoxide [0′2] or hydrogen perox­ide [H202]). These substances bind to and neu­tralize EMPO and MAT. MOBS are repelled by healthy endothelial cells and the basement mem­brane because of their negative charge. Cellular disturbances and disorganization stimulate the generation of fibrin monomer for repair purposes, leading to DIC.

Detection of Disseminated Intravascular Coagulation

The Sonodot Analyzer

The Sonoclot Coagulation Analyzer provides a reaction-rate record of fibrin and clot formation with platelet interaction. An axially vibrating probe is immersed to a controlled depth in a 0.4 ml sample of blood. The viscous drag imposed upon the probe by the fluid is sensed by the transducer. The electronic circuitry quantifies the drag as a change in electrical output. The signal is transmitted to a chart recorder which provides a representation of the entire clot for­mation, clot contraction and clot lysis processes. The analyzer is extremely sensitive to minute changes in visco-elasticity and records fibrin formation at a very early stage. The Sonoclot has been evaluated scientif­ically and shown to provide an accurate measurement of the clotting process.[58,59]

One application of the Analyzer has been the development of a test to distinguish non-advanced breast cancer from tumors that are benign. The ratio­nale for the test is the hypercoagulable state seen in cancer patients (Trousseau’s Syndrome), resulting from the generation of TF by leukocytes (mono­cytes).[60] (See Table 4.)

Fibrin Degradation
Products and Fibrin Monomer

DIC can be seen as a two-step process. First, fib­rinogen, which is always present in the blood, is acti­vated by any of several mechanisms. This activation leads to an automatic polymerization (chain forma­tion) resulting in fibrin monomer. This is not apparent in a microscope unless the blood is allowed to clot, as in the MOST.[61,62] The second step is the precipitation or deposition of fibrin (hard clot) by several other mechanisms. One of these is the formation of cross­links through the action of factor XIII. Another such mechanism may be poor circulation in an organ already blocked by deposited fibrin. The deposition of precipitated fibrin may be detected microscopically in tissue sections and diagnosed as DIC.[62]

Because fibrin monomer is not readily detected, a chemical test for it is of immense value in diagnosing DIC. Research has indicated that its detection may be very useful in the early diagnosis of DIC and MAT.[63] There are three fundamental physiologic areas related to blood clotting: (1) the prevention of blood clotting, (2) the clotting of blood, and (3) the removal of clotted blood once it has formed.

Enzymes are present that are capable of removing (lysing) clotted blood, one of which is plasmin. Another enzyme, plasminogen, is always present in the blood, but is inactive as a proteolytic agent. Plasminogen acti­vator converts plasminogen to plasmin, which can degrade deposited fibrin. This process is not specific for fibrin, however, and other proteins may be affected. When fibrin is degraded (fibrinolysis), fibrin monomer, as well as several other products, are formed. Commercial kits are available for the analysis of fibrin degradation. This test is an indirect measure of the pres­ence of DIC and MAT.[64]

Other tests include:

Protamine Sulfate: Protamine sulfate is a heparin binder sometimes used in surgery for excessive bleed­ing. The test, which indicates fibrin strands and fibrin degradation products, is conducted in a test tube, with fibrin monomer and fibrin forming early and polymer­ization of fibrin degradation products occurring later.[65] Ethanol Gelation: A white precipitate is formed by the addition of ethanol to a solution in a test tube containing fibrin monomer as a degradation product of fibrin, indicating DIC and MAT.[66]

The Mycotoxic Oxidative Stress Test (MOST)

Up to now, blood chemistries have been the prima­ry mode of diagnosis or analysis for the presence of pathology. In the view presented here, the bright-field microscope, is used to easily and inexpensively reveal a disease state as reflected by changes in certain aspects of blood composition and clotting ability. DIC is char­acterized by the abnormal presence in the blood of fib­rin monomer. When allowed to clot, blood containing such an abnormal artifact will exhibit distortions of normal patterns. The presence in the blood of soluble fragments of the extracellular matrix and soluble fibronectin, as well as other factors, will also create abnormal blood clotting patterns as described below.

A small amount of blood from a fingertip is con­tacted with a microscope slide. A series of drops is allowed to dry and clot in a normal manner. Under the compound microscope, the pattern seen in healthy subjects is essentially the same—a dense mat of red areas interconnected by dark, irregular lines, completely filling the area of the drop. The blood of people under mycotoxic/oxidative stress exhibits a variety of characteristic patterns which deviate from nor­mal, but with one striking, common abnormality: “clear” or white areas, in which the fibrin net/red blood cell conglomerate is missing.

BowelCancerLive Blood Dried Blood_0166

 

 

 

 

 

 

 

 

[Micrograph 3; An abnormal clot with striking ‘clear’ or white areas or protein polymerization as seen in the hyper coagulated blood of a patient with lower bowel imbalances]

Why the fibrin net is missing may be understood from the following: Two peptides—A and B—in the central protein bead of the fibrinogen structure become bound in the cross-linking process. There are two ways this can be configured: (1) Thrombin is capable of activating peptides A and B, resulting in the formation of a polymer loosely held together only by hydrogen bonds; (2) With peptides A and B acti­vated normally, the resulting hard clot is insoluble, indicating that the peptides are linked by covalent bonds. The difference in bonds results from factor XIII, an enzyme which links the two fibrin strands with a glutamine-lysine peptide bond.

Additional research has shown that the release of sialic acid from fibrinogen inhibits the action of factor XIII, resulting in a soft, white clot. In addition, acetic aldehyde has been shown to inactivate factor XIII directly. The soft clotting, compounded by other polymeric aggregations (described below), results in clear areas in the dry specimens. In the opposite extreme, high serum levels of calcium, for the pur­pose of neutralizing MAT, activates factor XIII, lead­ing to excessive cross-linking of fibrin to form a clot harder than normal. This is reflected in the MOST pattern characteristic of definite hypercalcemia— that of a series of cracks in the clot radiating outward from the center, resembling the spokes of a wheel. High serum calcium is the body’s attempt to com­pensate for the acidity of mycotoxic stress by pulling this alkalizing mineral from bone into the blood. This demand creates endocrine stress in turn, because reabsorption of bone is mediated by parathormone (PTH). Therefore, this clotting pattern indicates cal­cium deficiency and thyroid/parathyroid imbalance.

calciumpattern

 

 

 

 

 

 

 

[Micrograph 4: A mineral deficiency or more specifically a calcium deficiency pattern associated with an imbalance of they thyroid and/or parathyroid}

Advanced research has shown that there are seven carbohydrate chains in fibrinogen (each terminated by sialic acid). A second action of factor XIII is to ferment a large amount of carbohydrate during clot­ting. Because carbohydrate is most often water solu­ble, the loss of this material undoubtedly adds to the insolubility of a clot, while pathological retention contributes to the softness of the abnormal clot.

Clinical experience demonstrates that the MOST is a reliable indicator of exotoxic and mycotoxic stress and, concurrently, of various disorganizing symptoma­tologies associated with fermentative and oxidative processes. As various cellular degradation occurs, the blood-borne phenomena which accompany such symptoms as diabetes, arthritis, heart attack, stroke, atherosclerosis and cancer show up in the MOST, often with sialic acid beads in the clear areas of poly­merized proteins. (Determination of the liberation of sialic acid from carbohydrate has been approved by the U.S. Food and Drug Administration as an accept­ed indicator for cancer, and is clinically available.)

sialicacid

[Micrograph 5: Sialic acid beads are seen inside the protein
polymerization of the hypocoagulated blood as black dots]

The extent and shape of the clear areas are reflec­tive of particular symptomatologies which have arisen from the way in which the disease condition manifests in a given individual. This observation is borne out by having the patient undergo appropriate alkalizing therapy. With success of treatment based on the patient’s freedom from symptoms, sense of well-being, and live blood exams discussed in the main text of Sick and Tired, Reclaim Your Inner Terrain, Appendix C,[7] repeated analysis with the MOST reveals a progressively improving clotting pattern.

[Micrographs 6 and 7: Medically diagnosed cancer patient with large polymerized protein pools (PPP) in the hypo-coagulated blood above. In the picture below PPP’s have significantly reduced in size and the blood is moving to a more hyper-coagulated state as a result of reducing acid loads with an alkaline lifestyle and diet (7, 70)]

Because of its very nature, the MOST is emi­nently suited to reveal and measure the presence in the blood of abnormal substances, clotting factors, and disorganization of cells due to an inverted way of living, eating, and thinking, which gives rise to MAT. The MOST indicates both the direct and indirect activity of MAT on blood clotting, endothelium, and the extracellular matrix (described next), as well as on biochemical pathways, including hormonal ones. The generation of excessive MOBS in response to EMPO and MAT, the inability that accompanies all degenerative symptoms to neutralize or eradicate EMPO and MAT, and the recognized hyper- and hypocoagulable states seen in various symptomatolo­gies, will beyond doubt be revealed in the MOST.

Aspergillusnigercrystal

 

 

 

 

 

[Micrograph 8 and 9: Medically Diagnosed HIV/AIDS micrograph showing above an Aspergullus niger mold crystal using dark field microscopy and below a hypocoagulated blood clot with systemic protein polymerizations measuring in excess of 40 microns using bright field microscopy}

HIV

 

 

 

 

 

 

As mentioned, hormones are easily fermented, and this will show up as a hypocoagulated blood pattern in the MOST. It is my opinion, this hypocoagulated blood appears in the MOST as misty clouds of protein polymerizations throughout the clot, as seen in the accompanying picture.

poorfibrin

[Micrograph 10: Poor fibrin interconnection in the clot associated with endocrine or hormonal imbalance]

The MOST from Solubilized Extracellular Matrix

There is now a clearer picture of the biochemical rationale for correlating abnormal blood clotting patterns with the presence of degenerative symptoms.  A link between symptoms and the distorted clotted blood patterns has been delineated in the MOST.
Another reason for the abnormal clotting patterns accompanying pathological states, in addition to insufficient bonding of fibrinogen peptides as seen in the MOST, is presence in the blood of water-soluble fragments of the extracellular matrix.

Extracellular Matrix Degradation by MAT

The extracellular matrix (EM) is a three-dimen­sional gel, binding cells together and composed of five or more major constituents: collagen (protein), hyaluronic acid (polysaccharide), proteoglycans (pro- tein/polysaccharide), fibronectin and laminin. Also included are glycosaminoglycans and elastin.[67] In every degenerative disease studied by this author, evidence has been found for MAT activity destruc­tive of EM.

One of the proteolytic enzymes activated in response to EMPO and MAT is alpha-1 antitrypsin (capable of neutralizing MAT), normally not active in the presence of the enzyme trypsin. The active por­tion of this anti-exotoxin and antimycotoxin contains the amino acid methionine, which includes a C-S-C linkage. When chelated by the hydroxyl radical (one of the MOBS oxidants), methionine’s central sulfur atom acquires one or two oxygen atoms (forming the sulfone or sulfoxide respectively). The fermentation of methionine is a secondary effect of immune response to an alarming situation, intended to neutral­ize MAT and prevent degradation of the EM. Once alpha-1 antitrypsin is exhausted, MAT will have more access to the EM. If the EM is damaged beyond repair, then the enzyme trypsin is released to disorganize and recycle the cells involved.[68]

A similar scenario holds for the enzymes collage- nase and elastase. Thus, the absence of alpha-1 antitrypsin in the presence of EMPO and MAT activates three enzymes which degrade the extracellular matrix. Degradation of the EM by enzymes and MAT puts into the blood the water-soluble fragments (proteins and glycoproteins) of normally insoluble EM components (see Table 11). The presence of these fragments modifies the normal clotting pattern (described below), as seen in the M/OST, and is therefore an indication of EM degradation, which is always found with degenerative symptoms. (Also present is fibrin monomer, which has been found in the blood of patients suffering from collagen dis­ease.[69] See Table 11.)

Fibronectin is a molecule in EM having several binding sites for various long-chain molecules— heparin (a sulfonated polysaccharide) and collagen, for example. As such, it functions as a cellular glue, bind­ing cells together as well as various components of the EM. A soluble form of fibronectin is normally found free in the blood, and enters into the formation of a blood clot through the action of factor XIII. This form of fibronectin binds to fibrin. Elevated, bound-serum fibronectin results from EM fragmentation by MAT, and accompanies degenerative symptoms such as arthritis and emphysema (collagen diseases).

Water-soluble fragments of the EM bound by fibronectin form a three-dimensional network or gel in the pathologically clotted blood (fibrin and com­ponents of the blood clotting cascade). Since fibronectin binds to both fibrin and collagen, the two polymeric networks are superimposed and intermin­gled, resulting in a modification of the normal clot­ting pattern. Exactly how the pattern is modified depends upon the nature of the collagen abnormally present, the nature and extent of hyaluronate pre­sent, and the degree to which EM fibronectin has been released by MAT.

Conclusion

Thus, it is easily seen that there are many forms which the pattern of clotted blood may take, depending on the individual and the internal terrain that produced the modifying substances. The MOST reveals not only the presence of exotoxic and mycotoxic stress, but indicates as well the nature of the symptom(s) resulting from the stress (see Table 12). Since MAT underlie the entire complex of events which degrade the extracellular matrix, I must conclude that the absence of these exotoxins, endotoxins and mycotoxins would provide substantial improvements in tissue integrity and the overall physiology and functionality of the organism or animal and human.

­

­

References

[1]  Jones, T.W., “Observations on some points in the anatomy, physiology and pathology of the blood.”  British Foreign Medical Review, 1842. 14 : 585.

[2] Trousseau, A., Phlegmasis alba delens. “Clinque Medicale de L’Hotel Dieu de Paris.”, 1865, 3:94

[3]  Virchow, R., “Hypercoagulability: A review of its development, clinical application, and recent progress.”  Gesammelte Abhandlungen our Wussenschaftlichen Medizin, 1856, 26:477.

[4]  Rapaport, S.I., “Blood Coagulation and its Alterations in Hemorrhagic, and Thrombotic Disorders.”  The Western Journal of Medicine, 1993; 158: 153.

[5]  Hamilton, P.J. et al., “Disseminatied Intravascular Coagulation: A Review.”  Journal of Clinical Pathology, 1978, 31: 609

[6] The Harper Collins Illustrated Medical Dictionary, 1994, p.13.

[7] Young, RO, “Sick and Tired, Reclaim Your Inner Terraine,” Woodland Publishing, 1999.

[8] BeChamp, A., “The Blood and Its Third Anatomical Element,”  Hikari Omni Publishing, 1999.

[9]  Schwerdtle, C, Arnoul, F, Enerlein, G, “Introduction to Darkfield Diagnostics”, Semmelweis-Verlag (2006).

[10]  Hawk, BO, Thoma, GE, Inkley, JJ, The Evaluation of the Bolen Test as a Screening Test for Malignancy*, cancerres.aacrjournals.org on December 5, 2015. © 1951 American Association for Cancer Research.

[11]  Uchida, K., “Role of Reactive Aldehyde in Cardiovascular Diseases”,  Labortory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan , Free Radical Biology and MedicineVolume 28, Issue 12, 15 June 2000, Pages 1685–1696

 [12] Chang JCvan der Hoeven LHHaddox CH, “Glutathione reductase in the red blood cells”,  Ann Clin Lab Sci. 1978 Jan-Feb;8(1):23-9.

[13] Kutzing, MK, Firestein, BL, “Altered Uric Acid Levels and Disease States”, Department of Cell Biology and Neuroscience (M.K.K., B.L.F.), Graduate Program in Biomedical Engineering (M.K.K.), Rutgers University, Piscataway, New Jersey. Address correspondence to: Dr. Bonnie L. Firestein, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082. E-mail: firestein@biology.rutgers.edu

[14] Claudino, M,. Ceolin,,DS, Alberti, S.,  Cestari, TM,  Spadella, CT, Fischer Rubira-Bullen, IR, Gustavo Pompermaier Garlet, Gerson Francisco de Assis, ” Alloxan-Induced Diabetes Triggers the Development of Periodontal Disease in Rats”,  Published: December 19, 2007. DOI: 10.1371/journal.pone.0001320

[15] Young RO (2015), “Alkalizing Nutritional Therapy in the Prevention and Reversal of any Cancerous Condition. Int J Complement Alt Med 2(1): 00046. DOI: 10.15406/ijcam.2015.02.00046

[16] Heloise Pöckel FernandesCarlos Lenz Cesar, and  Maria de Lourdes Barjas-Castro, “Electrical properties of the red blood cell membrane and immunohematological investigation”, Rev Bras Hematol Hemoter. 2011; 33(4): 297–301. doi:  10.5581/1516-8484.20110080 PMCID: PMC3415751

[17] Harris, JO, “The Relationship Between the Surface Charge and the Absorption of Acid Dyes by Bacterial Cells”, Department of Bacteriology, Kansas Agricultural Experiment Station, Manhattan,Kansas, Received for publication March 3, 195.

[18] Young, RO, “Metabolic and Dietary Acids are the Fuel That Lights the Fuse that Ignites Inflammation that Leads to Cancer”. https://www.linkedin.com/pulse/metabolic-dietary-acids-fuse-ignites-inflammation-causes-young. 2015.

[19] Snaders, R, “Did Bacteria Spark Evolution of Multicellular Life?” Berkeley News, Research, Science and Environment,  October 24, 2012.

[20] Wenner, M, “Humans Carry More Bacterial Cells than Human Ones”. Scientific American, November 30th, 2007.

[21} Animals and humans respond to MAT as a poison.

[22]  Morrison, D.C. et al. The effects of bacterial endotox­ins on host mediation systems. American Journal of Pathology, 1978; 93: 526.

[23]  Ibid.

[24]  Ibid.

[25]  Van Deventer, S.J.H. et al. Intestinal Endotoxemia. Gastroenterology, 1988; 94(3): 825-831.

[26]  Morrison, D.C. et al., op. cit.

[27]  Ibid.

[28]  Hu, T. et al. Synthesis of tissue factor messenger RNA and procoagulant activity in breast cancer cells in response to serum stimulation. Thrombosis Research, 1993; 72: 155.

[29]  Rapaport, op. cit. (Ref. 4).

[30]  Ibid.

[31]  Mackman et al. Lipopolysaccharides—mediated tran­scriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. Journal of Experimental Medicine, 1991; 174: 1517.

[32]  Yamada, O. et al. Deleterious effects of endotoxins on cultured endothelial cells: An in vitro model of vascular injury. Inflammation, 1981; 5: 115.

[33]  Colucci, M. et al. Cultured human endothelial cells: An in vitro model of vascular injury. Journal of Clinical Investigation, 1983; 71: 1893.

[34]  Cho, T.H. et al. Effects of Escherichia coli toxin on structure and permeability of myocardial capillaries.

[35]  Acta Pathologica Japonica, 1991; 41: 12.

[36]  Rapaport, op. cit. (Ref. 4).

[37]  Ibid.

[38]  Margolis, J. The interrelationship of coagulation of plasma and release of peptides. Annals of the New York Academy of Sciences, 1963; 104: 133.

[39]  23-25. Ibid.

[40]  Morrison, D.C. et al., op. cit.

[41]  Rapaport, op. cit. (Ref. 4).

[42]  Alberts, B. et al, eds. Molecular Biology of the Cell. New York: Garland Publishing, Inc., 1989 (2nd ed.), p. 818.

[43]  Rapaport, op. cit. (Ref. 4).

[44] Bertz, A., et al. Modulation by cytokines of leukocyte endothelial cell interactions. Implications for thrombo­sis. Biorheology, 1990; 27: 455.

[45]  Rapaport, op. cit. (Ref. 4).

[46]  Nachman, R.L. et al. Hypercoagulable states. Annab of Internal Medicine, 1993; 119: 819.

[47]  Ibid.

[48]  Tallman, M.S., et al. New insights into the pathogene­sis of coagulation dysfunction in acute promyelocytic leukemia. Leukemia and Lymphoma, 1993; IT. 27.

[49]  Silberberg, J.M., et al. Identification of tissue factor in two human pancreatic cancer cell lines. Cancer Research, 1989; 49: 5443.

[50]  Grimstad, I.A. et al. Thromboplastin release, but not content, correlates with spontaneous metastasis of can­cer cells. International Journal of Cancer, 1988; 41: 427.

[51]  Gunji, Y. et al. Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Research, 1988; 48: 5216.

[52]  Sugiyama, S. et al. The role of leukotoxin (9, 10- epoxy-12-octadecenoate) in the genesis of coagulation abnormalities. Life Sciences, 1988; 43: 221.

[53]  Ibid.

[54]  White, A. et al, eds. Principles of Biochemistry. McGraw-Hill Book Co., New York, 1964, p. 648.

[55]  Mueller, H.E. et al. Increase of microbial neu­raminidase activity by the hydrogen peroxide concen­tration. Experientia, 1972; 23: 397.

[56]  Young, Robert O. Fermentology and oxidology. The study of fungus-produced mycotoxic species and the activation of the immune system and release of microzymian oxidative buffering species (MOBS). Self- published: InnerLight Biological Research Foundation, Alpine, Utah, 1994.

[57]Chandler, WL. et al. Evaluation of a new dynamic vis­cometer for measuring the viscosity of whole blood and plasma. Clinical Chemistry, 1986; 32: 505.

[58]  Saleem, A. et al. Viscoelastic measurement of clot for­mation: A new test of platelet function. Annals of Clinical and Laboratory Science, 1983; 13: 115.

[59]  Spillert, C.R. et al. Altered coagulability: An aid toselective breast biopsy. Journal of the National Medical Association, 1993; 85: 273.

[60]  Bowie, E.J. et al. The clinical pathology of intravascular coagulation. Bibliotheca Haematologica, 1983; 49: 217.

[61]  Muller-Berghaus, G. et al. The role of granulocytes in the activation of intravascular coagulation and the pre­cipitation of soluble fibrin by endotoxin. Blood, 1975; 45: 631.

[62]  Bick, R.L. Disseminated intravascular coagulation. Hematology/Oncology Clinics of North America, 1993; 6: 1259.

[63]  Bredbacka, S. et al. Laboratory methods for detecting disseminated intravascular coagulation (DIC): New aspects. Acta Anaesthesiologica Scandinavica, 1993; 37: 125.

[64]  Sigma Diagnostics, St. Louis, MO 63178; tel: 314- 771-5765.

[65]  Nachman, R.L. et al. Detection of intravascular coag­ulation by a serial-dilution protamine sulfate test. Annals of Internal Medicine, 1971; 75: 895.

[66]  Breen, F.A. et al. Ethanol gelation: A rapid screening test for intravascular coagulation. Annals of Internal Medicine, 1970; 69: 1197.

[67] Hay, E.D., ed. Cell Biology of Extracellular Matrix. New York: Plenum Press, 1981, p. 653.

[68]  Carp, H. et al. In vitro suppression of serum elastase- inhibitory capacity by ROTS generated by phagocytos- ing polymorphonuclear leukocytes. Journal of Clinical Investigation, 1979; 63: 793.

[69]  Wilson, C.L. The alternatively spliced V region con­tributes to the differential incorporation of plasma and cellular fibronectins into fibrin clots. Journal of Cell Biology, 1992; 119: 923.

[70] Young, RO, Young, SR, “The pH Miracle Revised and Updated”, Hachette Publishing, 2010.

Tables

Table 1

Expression of Sialic Acid/Galactose [MAT] from Cell and Protein Degeneration (From All Serum Proteins, RBC/WBC and Other Cell Surfaces)

  1.  Carbohydrate, Proteins, and Fats From Diet, Body Cells or Reserves
  2. As cells breakdown or ferment they give birth to bacteria, yeast, fungus and mold [EMPO] and their associated metabolic acidic waste [MAT]
  3. Exotoxins, Endotoxins, and Mycotoxins [MAT]
  4. Acetyl Aldehyde, Ethyl Alcohol, Uric Acid, Alloxan, Lactic Acid are examples of MAT
  5. MAT  Ferments Other Body Cells and their Extracellular Membranes and Proteins
  6. MAT Modifies Glycoprotein
  7. Binds to liver Galactosidase
  8. Creating an Increase in Cell and Protein Fermentation and Degeneration and Increased Amounts of Exotoxins, Endotoxins and Mycotoxins [MAT]

Table1a

Table 2

Expression of Sialic Acid [MAT] From the Fermentation of Degeneration of Insulin Producing Pancreatic Beta-Cells in Type I, Type II and Type III Diabetes

  1. Pancreatic Insulin producing Beta-Cells with no or minimal Surface Sialic Acid [MAT]A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Diet
  2. Normal regulation of Insulin Production
  3. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choicesdd
  4. Leads to cellular fermentation and degeneration and the birth of EMPO
  5. This lead to increased abnormal amounts of MAT that the immune system, the alkaline buffering system and the elimination organs has to deal with
  6. Fermenting and degenerating Insulin Producing Beta Cells
  7. Giving Rise to Surface Cell Sialic Acid [MAT}
  8. Increased Amounts of Sialic Acid Activates the Immune Response [MOBS] and Sialidase [AB]
  9. Leads to Lowered or No Insulin Production
  10. Symptoms of Type I, Type II or Type III Expressed
  11. The insulin producing beta cells of the Islets of Langerhans express silica acid on their surface as a break down metabolite.  I have suggested that when insulin producing beta cells are physically disturbed by MAT they begin to disorganize and express sialic acid on the surface of the cell.  This indicates the death of the cell and insulin production will stop.

Table2a

Table 3

HIGH BLOOD PRESSURE, ATHEROSCLEROSIS, HEART ATTACKS, STROKES, and CONGESTIVE HEART FAILURE

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the immune system to chelate the MAT.
  4. Increased amounts of MAT will cause endothelial breakdown and the expression of Sialic acid.
  5. Increased Amounts of Sialic Acid and damage to the endothelial will cause a reduction in the negative surface-charge leading to the release of Glycoproteins.
  6. The release of Glycoproteins will cause the activation of Factor XII and the blood clotting cascade.
  7. This cause the creation and formation of fibrin monomers and the increase of Platelet Deposition out of the red blood cells for clotting purposes
  8. The immune system will activate and MOBS will be released as well as sodium bicarbonate, calcium, lipids and other alkaline buffers to reduce metabolic acidity.
  9. The build-up of fibrin monomers in the clotting cascade will lead to fibrin nets and clots causing an increase in blood pressure and the risk of blockages potentially causing a Stroke or Heart Attack.

Table3a

Table 4

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
FROM INTRACELLULAR DISORGANIZATION OR FERMENTATION WHICH GIVES RISE TO MAT
 AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII (VIIa) and trace amounts of Factor Xa into the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activation of the blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated these unhealthy cells to protect healthy body cells.
  11. As body and blood cells breakdown from MAT this causes an increase of MAT and EMPO leading to systemic latent tissue acidosis and a potential metastatic cancerous condition.

Table4a

 Table 5

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
IN CELLULAR DISORGANIZATION OR FERMENTATION/OXIDATON AND THE INCREASE OF MAT AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices.
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII and Factor Xa in the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activated blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated the unhealthy cells.
  11. This leads to tumor formation of the unhealthy or cancerous cells.
  12. As the body and blood cells breakdown this causes an increase of MAT and EMPO leading to an increased risk of  systemic metastatic cancer.

Table5aTable 6

ENDOTHEIAl CELL CONVERSION FROM AN
ANTITHROMBOTIC STATE TO A PROCOAGULANT STATE
CELLULAR DISORGANIZING PATHWAY

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This leads to increased abnormal amounts of MAT that damages the protective endothelial cover cells leading to a reduction of PGI2
  4. The absence of PGI2 causes the release of Interleukin-1 and/or Tumor Necrosis Factor (TNF).
  5. In addition the loss of protective endothelial cover cells leads to Tissue Factor Gene Activation and the release of Thrombin causing a pro-coagulate state leading to DIC
  6. Another pathway to DIC would be the loss of protective endothelial cover cells and the absence of PGI2 causes the suppression of Thromomodulin, Protein C leading to procogradulation and DIC.

Talble6

 Table 7

ENDOTHELIAL CELL CONVERSION
FROM AN ANTITHROMBOTIC STATE
(NORMAL PATHWAY)

Table7

Table 8

MECHANISM OF DISSEMINATED INTRAVASCULAR COAGULATION GENERATED BY MAT

Table8Table 9

ACTIVATION OF SIALIDASE AND MICROZYMIAN OXIDATIVE BUFFERING SPECIES (MOBS) BY EMPO AND MAT

Table9

Table 10

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING FROM PHAGOCYTIC OXIDATIVE BURST

Table10

Table 11

MOST BLOOD TEST and DISSEMINATED INTRAVASCULAR COAGULATION WITH SOLUBILIZED EXTRACELLULAR MATRIX

Table11

Table 12

TYPICAL SOURCES OF FERMENTATION INSULT (MAT) IN BIOLOGICAL SYSTEMS INITIATING DIC

Table12

Table 13

POSITIVE CHARGE OF CANCEROUS CELLS AND TUMORS AND THE FORMATION OF FIBRIN NETS AND TREES IN RESPONSE TO MAT

Table13

The Future for Cancer Prevention and Treatment Here Today – The pH Miracle for Cancer!

images-5

Cancer Metastasis Rev. 2014 Dec;33(4):1095-108. doi: 10.1007/s10555-014-9531-3.

Microenvironmental acidosis in carcinogenesis and metastases: new strategies in prevention and therapy.

Fais S 1, Venturi GGatenby B.

Author information:

  • 1Department of Therapeutic Research and Medicines Evaluation, Unit of Antitumor Drugs, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy, stefano.fais@iss.it.

Abstract

Much effort is currently devoted to developing patient-specific cancer therapy based on molecular characterization of tumors. In particular, this approach seeks to identify driver mutations that can be blocked through small molecular inhibitors. However, this approach is limited by extensive intratumoral genetic heterogeneity, and, not surprisingly, even dramatic initial responses are typically of limited duration as resistant tumor clones rapidly emerge and proliferate. We propose an alternative approach based on observations that while tumor evolution produces genetic divergence, it is also associated with striking phenotypic convergence that loosely correspond to the well-known cancer “hallmarks”. These convergent properties can be described as driver phenotypes and may be more consistently and robustly expressed than genetic targets. To this purpose, it is necessary to identify strategies that are critical for cancer progression and metastases, and it is likely that these driver phenotypes will be closely related to cancer “hallmarks”. It appears that an antiacidic approach, by targetting a driver phenotype in tumors, may be thought as a future strategy against tumors in either preventing the occurrence of cancer or treating tumor patients with multiple aims, including the improvement of efficacy of existing therapies, possibly reducing their systemic side effects, and controlling tumor growth, progression, and metastasis. This may be achieved with existing molecules such as proton pump inhibitors (PPIs) and buffers such as sodium bicarbonate, citrate, or TRIS.

To learn more about the prevention and non-invasive treatment for Cancer  read the following introduction to the pH Miracle for Cancer  by Dr. Robert O. Young:

 The pH Miracle for Cancer is coming out next week. I thought you might enjoy a preview by reading the introduction – I am very, very grateful to be able to share with you my cancer research I call the New Biology(R). I also refer to my research as the pH Miracle – a new way of living, a new way of eating, a new way of thinking. Some of the questions I will be covering in the pH Miracle for Cancer include:

What is Cancer?
What is the cause of all cancers? (Is cancer a mutant cell, a virus, a mold? Or is cancer an acidic liquid?) Is cancer a noun or is it actually an adjective that explains what’s happening to the body cells? Are tumors bad or good? What role does the lymphatic system play in preventing and reversing a cancerous condition? The focus for preventing and reversing cancer must be on the alkaline pH of the body fluids as a systemic acidic condition. The key to preventing and/or reversing cancer is to obtain the necessary sustainable energy for optimal body function and the elimination of toxic acidic waste products from diet, metabolism, respiration and the environment that all contribute to the cause of a cancerous condition.

Most of the last 30 years of my cancer research has been focused on what is happening to the cells as it pertains specifically to the environment around those cells. I love this quote by Ralph Waldo Emerson: “What lies behind us and what lies before us are tiny matters compared to what lies within us.” The focus of my cancer research has been specifically on what lies within us and, more specifically, how the internal fluids of the body affect the health, energy, and vitality of the human cell, tissues, organs and glands. Dr Benjamin Rush, eminent physician and signer of the Declaration of Independence, said: “Unless we put medical freedom into the Constitution, the time will come when medicine will organize into an underground dictatorship. To restrict the art of healing to one class of men and deny equal privileges to others will constitute the Bastille of medical science. All such laws are un-American and despotic.”

As I think about my vision, the relative purpose of medicine I believe medicine must include not just the treatment but also the prevention of illness and the promotion of health and fitness, rather than just focusing all of our attention on a specific diagnosis or even the treatment of the disease. Because disease is an illusion! In reality, disease is the body trying to prevent over-acidification or fermentation or breakdown of the body cells, tissues, organs or glands.

Disease is the body in preservation mode trying to maintain the homeostasis of the internal fluids of the body, which are all alkaline.

I believe that the ultimate purpose of medicine is to help people discover something fundamental within themselves. And that is an awareness of the true source of wellbeing, the true source of joy, the true source of contentment that we all seek which lies in one’s mind and in one’s heart – which are the emotions and the spirit. And this is important so that you and I can all begin to be free from the process of grasping for happiness in a physical world.
To support this approach, this theory, I believe we must begin to embrace a more spiritual vision of ourselves and of humanity as a whole, while at the right time providing great love, care, and attention to the physical body. Then, and only then, will medicine (or the treatments that medicine is current performing) help people discover this non-physical, spiritual dimension of themselves. And when this happens I believe that we can live and work with less fear.

Rather than working in fear you can work in its opposite – you can work in faith. You are going to have less stress grasping to preserve the physical body at all costs, then I believe you can truly be happy, energetic, and free from ALL sickness and disease, especially cancer.

Several years ago Shelley and I had the opportunity to have a wonderful experience with Dr. Lawrence Carter who is the caretaker of the estate of Martin Luther King, at Morehouse College and also the protégé of M. L. King, and there he honored. The most important thing that I learned about Dr. Carter was his openness to not just thinking outside the box, because we talk a lot about thinking outside the box, but making our box of knowledge bigger. I would like to suggest rather than thinking outside the box as you contemplate my theories on the prevention and treatment of cancer but making your box bigger to include all truth. I would also suggest as you read this book that you do not have to think outside the box, you just need to make your box of knowledge bigger to allow for new technology, new biology, and new protocols that are effectively making the difference, specifically in the prevention and treatment of cancer.

I truly believe in the words of Gandhi when he said, “you must be the change you want to see.”

If you are looking for the cure for cancer, I believe you must be change you want to see. You’ll have to look at cancer differently, not outside the box but inside the box making it bigger. Expanding your views and your perspective as it relates to prevention and the true cause of cancer.

Now, before you start exploring the pH Miracle for Cancer, I must start by defining a ‘pH miracle’. I would suggest that a ‘pH miracle’ is a natural phenomenon, that is not currently understood by medical researchers, specifically in the cause and effect relationship. What is the cause? Is cancer a cause for disease? I say NO! Cancer is the body perfectly attempting to maintain alkaline homeostasis. Cancer is the body in perfect preservation mode trying to maintain its natural healthy alkaline design. So first, you must understand that cancer is unequivocally not a disease, but a symptom or better yet an effect of gastrointestinal, respiratory, environmental and metabolic acids that build up in the blood and then thrown off into the tissues poisoning and suppressing our immune system making it increasingly difficult to maintain the alkaline pH of the internal fluids of the body. Metabolic, respiratory, environmental and dietary acids also destroy the white cells’ ability to remove toxins and the cells which they spoil or degenerate.

What I’m simply suggesting is that cancer is not a cell, but an acidic toxic liquid that spoils and degenerated the body cells that make up our tissues, organs and glands. This happens when toxic acidic waste products are not properly eliminated through the four channels of elimination, which are urination, perspiration, respiration and defecation.

Let’s now look at the current medical definition of cancer. What is it? Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal body cells. If the spread is not controlled it can result in death. Cancer is caused by both external factors, some of which are known and are common in our society such as tobacco, chemicals, radiation (from our cellular phones) and internal factors: hormone imbalances, immune deficiency and gene mutations – which is what they’re suggesting. These factors may act together in a sequence to promote what is called carcinogenesis. This is the classical definition of cancer, taken directly from the American Cancer Society.

What is being suggested by current medical science is that the cancer is some mutating cell – a transmutation of the genes – triggered by internal or external factors. This is true but what is not understood is these internal or external factors are the acidic waste products of diet, metabolism, respiration and the environment. When you are dealing with any symptom or an effect, you need to look at the cause. Whether externally or internally, the focus traditionally has been to look at the matter or cells that make up your tissues, organs and glands rather than looking at the internal environment around the matter. And, to understand the cause of cancer is very simple just like the treatment. The New Biology® explains the cause and effect of all sickness and disease and specifically cancer as well as how to improve the quality and quantity of life without chemical therapy, radiation or surgery. The pH Miracle for Cancer is a drug-free protocol to a cure for cancer!

Let me give you an example. Enervation (ie, lack of energy), muscle weakness, you’ve probably seen the commercials on television, it’s a new disease they call restless legs syndrome (RLS) for which there are drugs that supposedly treat the syndrome. Current medical researchers want to put everything in a disease modality – a nice little box – that has a specific treatment. Yet restless legs syndrome is weakness or loss of electrical power to the muscles. It’s not a disease. But, by causing a flagging of the toxic elimination from the tissue, the blood becomes charged with these metabolic toxic acids and when it’s charged with these metabolic toxic acids the blood has to purify itself by throwing these metabolic toxic acids into the tissues to maintain its delicate pH balance of 7.365. This is what I call the body in preservation mode, which leads to what I refer to as latent tissue acidosis or acid build-up in the connective and fatty tissues. Acid is poison in the blood, and if that poison is not eliminated through urination, defecation, respiration or perspiration the body has to purify itself so it eliminates this acidic poison into the connective and fatty tissues. This is the disease, or is it? Not even skin challenges when the acids accumulate beyond the toleration point, a crisis takes place, which means that the acidic poison is being eliminated through the pores of the skin.

Looking at the 2012 statistics for cancer, this coming year in America we’re looking at 1,400,000 new cases of cancer. By the way, this statistic doesn’t even include skin cancer, which is actually bigger than lung cancer, breast cancer or prostate cancer combined. And, prostate cancer is known to be the leading cause of death in men while lung cancer being the leading cause of death in women. And yet when we look at cancer, the new incidents of cancer and the new diagnoses are skin cancers because the skin is the third kidney – the largest acid elimination organ for removing acidic toxic waste products. And if acids are not properly eliminated through normal elimination channels, then those acids are thrown out into the tissues and this is what’s not currently recognized or understood by medical science.

This is the way the blood maintains its delicate alkaline pH and purity by either eliminating acid through urination or defecation or throwing it into the connective or fatty tissues which leads to this crisis, this poisoning, this elimination through the pores of the skin, again the third kidney! And this is not a disease! The only disease is systemic, because acids flow out through your whole body. They are the waste products of metabolism, diet, respiration and the external toxic environment.

Your body is like a car. You are constantly on 24/7 and you require energy and when energy is being used, a waste product like carbon dioxide or carbon monoxide or lactic acid or uric acid is being created. So acid is constantly being created by the body cells, which has to be eliminated or it will cause cancer!
When energy is being used to think, to move, to breathe, at the same time an acidic waste product is being created and this acidic waste product needs to be eliminated. If the acid is not eliminated, it is pushed out into the connective tissue. It is your connective tissue that becomes the ‘acid catcher’ in order to maintain the purity and alkalinity of the blood. The blood has to maintain its purity and alkalinity and this is why the blood has a constant pH of 7.365. If it varies even just one-tenth of one point you can have ill effects. The proper healthy pH balance of the blood is 7.365. If the blood pH starts dropping or if it starts going up, the body will do whatever it can to maintain its delicate pH. This is very significant in order to understand the cause and treatment of cancer and why it’s not a cell but the spoiling of the cells by dietary and/or metabolic acids, which have not been properly eliminated through normal elimination. When you are enervated or fatigued you do not have the energy to move the acidic waste products out of the body to maintain the purity of the blood. When this happens the blood pushes these acidic waste products out into the connective and fatty tissues.

For example, when acidic waste elimination takes place through the mucus membrane of the nose, it is called a cold – catarrh of the nose. And when this crisis is repeated for years the mucus membrane thickens and ulcerates, and the bones enlarge, closing the passages. At this stage hay fever, then asthma develops. When the tonsils or any other respiratory passages become the seat of the crisis of acidity (because the acids were not properly eliminated through urination or defecation or respiration or perspiration) then we have tonsillitis, laryngitis, bronchitis, asthma, pneumonia, and finally cancer. You see, it’s progressive. It’s the same disease at different levels of acidity. All of these symptoms are happening in different progressions from the same thing – just different levels of states of acidosis.

When acid is located in the cranial cavity we have dementia, Alzheimer’s, Parkinson’s, muddle thinking, and/or forgetfulness. If the acids accumulate in the digestive area, we end up with irritable bowel syndrome, gastro intestinal problems, stenosis, and colitis. And, when the acids locate in the pelvic tissue, or in the breasts, we end up with micro-calcifications and finally cancerous breast and reproductive organs. When the body is in the preservation mode, it is using alkaline buffers such as calcium, potassium, magnesium and sodium to neutralize or solidify the acidic liquid waste.

This is why I first see, using Ultrasound imaging, micro-calcifications in the pelvic area and in the breast tissue prior to the cancerous breast condition. The buffering of toxic acidic waste, forming micro-calcifications always precedes the cancerous condition of the tissue, organ or gland. Even in prostate cancer.

Hence all cancerous conditions are the expulsion of acids from the blood and then the tissues, organs and glands at different points and are essentially the same character evolving from the same cause, namely systemic acidosis – a crisis of toxemia. The description can be extended to every organ of the body: the lung, the liver, the pancreas, the bowels, the brain, including the largest organs which have the highest incidents, the skin. Any organ that is enervated or fatigued below the average standard (from stress of habit, from overstressed at work, from worry, anxiety, fear, injury, etc.) may become the location of the crisis of systemic latent tissue acidosis. The symptoms are presented differently depending upon which organ is being affected. Which is what makes it appear as if every symptom complex is a separate and distinct disease. You need to begin thinking inside the box and make your box bigger.

I give thanks to this new light and knowledge shed upon nomen culture naming disease by the philosophy of The New Biology(R), every symptom complex goes back to the one and only cause of all so-called cancers, namely systemic latent tissue acidosis. To find the cause of all symptomologies – lung cancer, breast cancer, brain cancer, bowel cancer, pancreatic cancer, thyroid cancer, and prostate cancer – you start with colds and catarrh, and watch the pathology as is it travels from irritation to catarrh to inflammation to induration to ulceration and finally to degeneration or cancer – Nothing more than rotting degenerating tissues, organs or glands. And what is causing this transformation or the degeneration of the cell(s), including the gene transmutation? It is simply the spoiling of the cell(s) due to the build-up of dietary, respiratory, environmental and/or metabolic acids, which have not been properly eliminated through urination, defecation, respiration or perspiration!

10422569_694599750666114_7788723169049035777_n

Have you ever opened a refrigerator and smelt the spoiling of food at the back? What you are smelling is the acidic wastes from spoiling food! It’s not some germ, it’s not some virus, it’s not some mold that’s breaking the food down, it’s the acidic waste products that are breaking the tissue down and giving rise to the symptomatology. Mold is like a smoking gun, the bullet being the acid. And yet it’s not the bullet or the acid that kills, and surely not the smoke or some gene mutation, or some bacteria or virus, but it is the person himself or herself that is pulling the acidic lifestyle and dietary trigger which then releases the acids that then tenderizes or spoils or rots the cells that make up your tissues, organs and glands. And, a cancerous condition always expresses itself first in the weakest parts of the body.

Nature’s order is interfered with by innovating acidic lifestyle and dietary habits until acidosis is established.

A vaccination as evidenced by the Spanish flu epidemic or an infection, in truth is literally an out-fection from the same source causing the most vulnerable organ, specifically the bowels, to take on organic or anatomical changes. The organ however has nothing to do with the cause, and directing treatment to the organ is actually compounding the problem. You cannot treat disease when in reality disease is the body in preservation mode trying to re-establish alkaline homeostasis when in a state of systemic acidosis that is affecting the weakest parts of the body, first!

When you realize that breast cancer is the second leading cause of death in women and these fatty tissues (breast areas) are being used by the body to bind or collect acidic waste products in order to protect the organs that sustain life. And, by the way, when one does a mammogram and sees these micro-calcification in the breast tissue, this is an indication of a state of tissue acidosis – the body’s defensive mechanism to relieve or remove or neutralize and solidify acidity that has not been properly eliminated though urination, defecation, respiration or perspiration.

If you are dealing with a cancerous prostate, you are dealing with localized acidity. If you are dealing with lung cancer, you are dealing with localized acidity that has been caused by external or internal forces even though a cancerous condition begins from within. As you take in tobacco smoke, there are acids or toxins or poisons – one being sugar which breaks down to acetaldehyde, which tenderizes and rots the lung tissues. Tobacco smoking is not an addiction of nicotine alone. It is an addiction of sugar, which causes excess acidity in the lung causing lung cancer. The cause is always constant, ever-present, always the same, only the effects change. To illustrate, a catarrh of the stomach presents first irritation, then inflammation, then ulceration, induration and finally degeneration or a cancerous stomach. Cancer is not at the first, it’s the culmination of deteriorating or broken tissue spoiled by an over-acidic stomach from an over-acidic lifestyle and diet.

Most people in the world are challenged with the symptomatology of indigestion, which can include acid reflux, bloating, heartburn, burping, diarrhea, or even constipation. The proper way to study a disease is to study health in every aspect. Disease is perverted health. Cancer is perverted health – any influence that lowers energy becomes disease-producing.

There’s an important question now to answer. Why do I crave sugar? It’s interesting when doing an MRI or a CAT scan. What is used but radioactive sugar that is taken up by the acidic cancerous cells – not cancer cells because we don’t have cancer cells, we have acidic cells or cancerous cells – cells that have been spoiled by the environment in which they live. So sugar cravings are the body’s need for sustainable energy. And energy can only be transported through a matrix of salt. Therefore sugar cravings are the body’s needs for salt, not sugar. I would suggest that sugar is an acid of cellular transformation – a waste product – not a product of energy, but a by-product of what the body truly uses which is electrical potential in the form of electrons.

The body doesn’t use carbohydrates, the body uses electrons to run. The body is electrical. And sugar is nothing more than an acidic waste product of cellular breakdown and transformation. Isn’t that what happens to the banana? As the banana moves from irritation to inflammation to induration and then to cancer, going from green to yellow to brown, getting its “liver spots” the same way you get liver spots, through excess fermentation and rotting. You do not say the banana has cancer, you say the banana is spoiling. In the same way you shouldn’t say that the lung has cancer but rather that the lung is spoiling – it is cancerous. Cancer is not a noun but an adjective expressing the process of cellular transformation. Again, sugar is the waste product. In fact, that’s why a banana gets sweeter and sweeter as it ferments. Consistently in my cancer research I see that we have a release of sugar from the breakdown of tissues, organs or glands. And to overcome sugar cravings you don’t have to eat sugar, you need to eat more salt. The secondary metabolites of this primary acid or sugar are acetaldehyde and ethanol alcohol. So sugar cravings are the body’s signal that the body needs more sustainable energy. You need energy to remove the acids of diet and metabolism – the body utilizing electrons for energy purposes. Food, water, sun, minerals, vitamins, drugs… are common choices made by us to achieve sustainable energy, but yet what you are looking for are the electrons from these sources. And your choices will determine whether or not your cravings will lead to true sustainable energy which maintains the alkaline integrity of the fluids of body and therefore the integrity of the tissues, organs and glands, or gives you false energy which creates this over-acidic state that leads to latent tissue acidosis which begins the process of spoiling of the tissues, organs and glands and finally a degenerative or cancerous condition.

Sugar stimulates and gives the body a deceptive quick-fix – it’s illusionary – whereas salt provides the matrix of life and gives your body the rise in sustainable energy, over a longer period of time, without the high and extreme lows that come from eating an acid – whether it be sugar or any other acidic foods or drinks.

It is the skin that suffers most, because if the body can’t eliminate the acids that are created through energy use, it throws the acidic wastes out into the connective and fatty tissues and into the lymphatic system. This is why the lymphatic system is so critical in the prevention of cancer and in the treatment of cancer, because it is the lymphatic system that is the vacuum cleaner of the acids that are in the interstitial fluids of the body, pulling these poisonous acids out in order to maintain the integrity of the tissue through diaphramic breathing and perspiration (that is if you are perspiring, which is one of the most important things you need to do on a daily basis to remove cancer causing acids). If you cannot eliminate your acidic wastes completely through urination, respiration or defecation then your body urinates through the skin – which is why there is over a million cases of skin cancer a year in the United States alone. It’s not talked about. Why? Because the etiology of skin cancer is not understood. It is unknown. Scientists don’t know what causes basal cell carcinoma, melanoma, they do not understand it because they don’t understand latent tissue acidosis and the importance of the lymphatic system as the vacuum cleaner to remove poisonous acidic wastes out via the kidneys and through perspiration. But people are not exercising, and this is why obesity and a lack of exercise have been associated with cancer. Yet when you are moving your body you are moving the acidic wastes out of the connective and fatty tissues, organs and glands. The lymphatic system, unlike the circulatory system, does not have a pump (the heart), it actually flows through movement. It is the diaphragm muscle that acts as a pump for the lymphatic system that moves acidic wastes through the system – out through perspiration or back into general circulation to be eliminated through urination.

And if you have a cancerous condition you have to pee your way to health. Because cancer is not a cell, but a poisonous acidic liquid. A cancer cell is a cell that has been spoiled or poisoned by the metabolic, respiratory, environmental and/or gastrointestinal acids that are produced internally, or may be taken in via the lungs or skin. That’s when the body will go into the preservation mode by forming fibrous materials, which cross-link to encapsulate the spoiled cancerous cells and thus forming the protective tumor. Hence, the tumor is the body’s protective mechanism to encapsulate spoiled or poisoned acidic cells from excess acidic wastes which have not been properly eliminated through urination, defecation, respiration and/or perspiration. The tumor is the body’s solution to protect healthy cells that make up tissues, organs and glands of the body. So, the tumor is not the problem. Let the tumor go. Let it do its job. The focus must be placed not on the tumor but on the internal environment around the tumor, which is full of acidic cells. One of the common acids which is in higher concentration around all tumors is lactic acid. Lactic acid is a by-product of metabolism when you are in a state of oxygen deprivation. Think of any cancerous condition as a systemic acidic condition that affects first the weakest parts of the body, not a local problem that metastasizes. You see metastasis is localized acids that spoil other cells much like a rotten apple placed in the center of a bushel of healthy apples will spoil the whole bushel. I call this the ‘domino effect’ where one acidic cell spoils another healthy cell causing a chain reaction. The body stops the ‘domino effect’ by forming the tumor around the cancerous or acidic body cells.

Therefore, there is no such thing as a cancer cell. A cancer cell in reality is a cancerous cell. Cancer is an adjective expressing the spoiling body cells that are rotting in an over-acidic environment. A cancerous cell was once a healthy cell that has been spoiled from an over-acidic lifestyle and diet and the body’s inability to remove these acids through the proper channels of elimination.
The only solution to the acidic toxic liquids that poison our body cells causing the effect that medical doctors call cancer, is to change the environment. It has to be a contextual approach. You must restore and maintain the alkaline design of the human body if you want to prevent or reverse a cancerous condition. This has been my great discovery of the 21st century – that the human organism is alkaline by design and acidic by function. Every part of the body that makes up every anatomical element, that makes up your genetic material, that makes up your body cells, every single part has to be bathed in an alkaline fluid which needs to be purified every 24 hours to remain healthy.

Early in the 19th century, beginning on January 17, 1912, a famous French physiologist of the Rockefeller Institute and Nobel Prize winner, Dr. Alexis Carrel, removed a very small piece of heart muscle from an un-hatched chicken embryo—still warm and living—and placed it in fresh nutrient solution in a glass flask of his own design. He transferred the tissue every forty-eight hours, during which time it doubled in size and had to be trimmed before being moved to its new flask. Every time he moved the heart he would put it into an alkaline saline solution with the appropriate alkalizing minerals. Twenty years later the heart tissue was still growing. Keep in mind that the average chicken lives for 5 – 7 years. So, after getting bored of singing “Happy Birthday” to the chicken heart for over twenty years he decided to pull the plug and not change the fluids every 48 hours and the heart finally died.

This is a very important discovery, which very few people know about. Why? Because it answers the question about why cells live and why cells die. You see, the life expectancy of the human cell is infinite. The body cells become compromised by their environment. Once you understand that matter cannot be created nor can it be destroyed it can only change its form or function, then you will realize that the environment is everything, the terrain is everything, and the cell is subservient to that.

The secret to Dr. Carrel’s chicken heart surviving for twenty years lies in this knowledge, this New Biology, this new way of living and thinking as we expand the box rather than thinking outside the box, that the cell is only as healthy as the alkaline fluids it is bathed in. The heart is only as healthy as the cells and the fluids they are bathed in. If you have any cancerous condition, this cancerous condition is the expression of your internal environment. The human cell will only breakdown in an acidic environment and become cancerous.

Carrel’s experiment brought me to the modern New Biology, the new understanding, the new expansion, the new medicine and the new definition of cancer – that the composition of our body fluids that bath the outside of our cells must be controlled very carefully from moment to moment and day-to-day with no single important constituent varying more than a one percent. This condition of health can be controlled and you can do it yourself!

In 1932 Otto Warburg received his Nobel Prize in medicine for discovering the cause of cancer. He described it as a cell changing its mode of respiration, its mode of metabolism – from respiration to fermentation. He suggested that cancer was the result of acidic environment, a state of oxygen deprivation. Warburg also wrote a paper entitled, “The Prime Cause and Prevention of Cancer.” He states: “There is no disease whose prime cause is better known – over acidity.”

When you understand this you realize that all conditions of cancer potentially can be reversed if the treatments are focused on the fluids and not the cells of the body. Therefore it doesn’t matter what the cancerous condition is, because cancer is not the cause but the effect of an over-acidic lifestyle and diet which is the cause of cancer. It’s you pulling the acidic lifestyle and dietary trigger that causes cancer. You do NOT get CANCER – You DO CANCER with your daily lifestyle and dietary choices!

After 30 years of doing blood research, after looking at thousands and thousands of cancerous patients, I’ve never seen healthy blood or an alkaline internal environment – whether testing the pH of the saliva, or the urine, or the blood, or the sweat, or the tears – they are all acidic in an over-acidic internal environment. I have come to understand that the human organism is alkaline by design and acidic by function, and if you maintain this alkaline design of your body through an alkaline lifestyle and diet you WiLL prevent all cancerous conditions. For the cure of cancer is not found in its treatment, because a cancerous condition is the body in preservation mode trying to restore its alkalinity. The cure for a cancerous condition will not be found in its treatment of the tissues but in maintaining the alkaline design of the body fluids.

As Thomas Edison said: “The doctor of the future will give no medicine, but will involve the patient in the proper use of food, fresh air and exercise.

The future is here and NOW and is found in the following chapters of pH Miracle for Cancer.

My hope is The pH Miracle for Cancer will expand your box of truth and knowledge to protect you from the acidic condition medical science calls Cancer.

To pre-order The pH Miracle for Cancer go to: http://www.phoreveryoung.com

The digital version of The pH Miracle for Cancer is NOW Available just order on line at: http://www.phoreveryoung.com

.@wsjhealth,.@foxnews,.@cnn,.@cbsnews,.@abcnews,.@nbcnews,.@msnbc,.@usatoday,.@bbc,.@time,.@newsweek

References

1. Hanna G, Fontanella A, Palmer G, Shan S, Radiloff DR, Zhao Y, Irwin D, Hamilton K, Boico A, Piantadosi CA, Blueschke G, Dewhirst M, McMahon T, Schroeder T. Automated measurement of blood flow velocity and direction and hemoglobin oxygen saturation in the rat lung using intravital microscopy. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2013;304(2):L86–L91.[PubMed]

2. Yang, K.R., Mooney, S., Zarif, J.C., Coffey, D.S., Taichman, R.S. & Pienta, K.J. (2014). Niche inheritance: a cooperative pathway to enhance cancer cell fitness through ecosystem engineering. Journal of Cellular Biochemistry. [PMC free article]  [PubMed]

3. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature reviews. Cancer. 2004;4(11):891–899.  [PubMed]

4. Lee WY, Huang SC, Hsu KF, Tzeng CC, Shen WL. Roles for hypoxia-regulated genes during cervical carcinogenesis: somatic evolution during the hypoxia-glycolysis-acidosis sequence. Gynecologic Oncology. 2008;108(2):377–384.  [PubMed]

5. Ibrahim-Hashim A, Cornnell HH, Abrahams D, Lloyd M, Bui M, Gillies RJ, Gatenby RA. Systemic buffers inhibit carcinogenesis in TRAMP mice. The Journal of Urology. 2012;188(2):624–631.[PMC free article]  [PubMed]

6. Estrella V, Chen T, Lloyd M, Wojtkowiak J, Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg JM, Sloane BF, Johnson J, Gatenby RA, Gillies RJ. Acidity generated by the tumor microenvironment drives local invasion. Cancer Research. 2013;73(5):1524–1535.[PMC free article]  [PubMed]

7. Robey IF, Baggett BK, Kirkpatrick ND, Roe DJ, Dosescu J, Sloane BF, Hashim AI, Morse DL, Raghunand N, Gatenby RA, Gillies RJ. Bicarbonate increases tumor pH and inhibits spontaneous metastases. Cancer Research. 2009;69(6):2260–2268. [PMC free article]  [PubMed]

8. Warburg O. On the origin of cancer cells. Science (New York, N.Y.) 1956;123(3191):309–314.[PubMed]

9. Zu XL, Guppy M. Cancer metabolism: facts, fantasy, and fiction. Biochemical and Biophysical Research Communications. 2004;313(3):459–465.  [PubMed]

10. Kroemer G. Mitochondria in cancer. Oncogene. 2006;25(34):4630–4632.  [PubMed]

11. Hume DA, Weidemann MJ. Role and regulation of glucose metabolism in proliferating cells. Journal of the National Cancer Institute. 1979;62(1):3–8.  [PubMed]

12. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science (New York, N.Y.) 2009;324(5930):1029–1033.[PMC free article]  [PubMed]

13. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(49):19345–19350. [PMC free article]  [PubMed]

14. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biology. 2010;8(10):e1000514. [PMC free article]  [PubMed]

15. Gillies RJ, Robey I, Gatenby RA. Causes and consequences of increased glucose metabolism of cancers. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine. 2008;49(Suppl 2):24S–42S.  [PubMed]

16. Gatenby RA. The potential role of transformation-induced metabolic changes in tumor-host interaction. Cancer Research. 1995;55(18):4151–4156.  [PubMed]

17. Gillies RJ, Martinez-Zaguilan R, Martinez GM, Serrano R, Perona R. Tumorigenic 3T3 cells maintain an alkaline intracellular pH under physiological conditions. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(19):7414–74

18. [PMC free article]  [PubMed]18. Gatenby RA, Gillies RJ. A microenvironmental model of carcinogenesis. Nature Reviews. Cancer. 2008;8(1):56–61.  [PubMed]

19. Garcia SB, Novelli M, Wright NA. The clonal origin and clonal evolution of epithelial tumours. International Journal of Experimental Pathology. 2000;81(2):89–116. [PMC free article]  [PubMed]

20. Nowell PC. The clonal evolution of tumor cell populations. Science (New York, N.Y.) 1976;194(4260):23–28.  [PubMed]

21. Ilyas M, Straub J, Tomlinson IP, Bodmer WF. Genetic pathways in colorectal and other cancers. European Journal of Cancer (Oxford, England: 1990) 1999;35(3):335–351.  [PubMed]

22. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990;61(5):759–767.[PubMed]

23. Silva AS, Gatenby RA, Gillies RJ, Yunes JA. A quantitative theoretical model for the development of malignancy in ductal carcinoma in situJournal of Theoretical Biology. 2010;262(4):601–613.  [PubMed]

24. Gatenby RA, Smallbone K, Maini PK, Rose F, Averill J, Nagle RB, Worrall L, Gillies RJ. Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer. British Journal of Cancer. 2007;97(5):646–653. [PMC free article]  [PubMed]

25. Smallbone K, Gatenby RA, Gillies RJ, Maini PK, Gavaghan DJ. Metabolic changes during carcinogenesis: potential impact on invasiveness. Journal of Theoretical Biology. 2007;244(4):703–713.[PubMed]

26. Wykoff CC, Beasley N, Watson PH, Campo L, Chia SK, English R, Pastorek J, Sly WS, Ratcliffe P, Harris AL. Expression of the hypoxia-inducible and tumor-associated carbonic anhydrases in ductal carcinoma in situ of the breast. The American Journal of Pathology. 2001;158(3):1011–1019.[PMC free article]  [PubMed]

27. Huber V, De Milito A, Harguindey S, Reshkin SJ, Wahl ML, Rauch C, Chiesi A, Pouyssegur J, Gatenby RA, Rivoltini L, Fais S. Proton dynamics in cancer. Journal of Translational Medicine. 2010;8:57.[PMC free article]  [PubMed]

28. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a perfect storm for cancer progression. Nature Reviews. Cancer. 2011;11(9):671–677.  [PubMed]

29. Rich IN, Worthington-White D, Garden OA, Musk P. Apoptosis of leukemic cells accompanies reduction in intracellular pH after targeted inhibition of the Na(+)/H(+) exchanger. Blood. 2000;95(4):1427–1434.  [PubMed]

30. Che XF, Zheng CL, Akiyama S, Tomoda A. 2-Aminophenoxazine-3-one and 2-amino-4,4alpha-dihydro-4alpha,7-dimethyl-3H-phenoxazine-3-one cause cellular apoptosis by reducing higher intracellular pH in cancer cells. Proceedings of the Japan Academy. Series B, Physical and Biological Sciences. 2011;87(4):199–213. [PMC free article]  [PubMed]

31. Nagata H, Che XF, Miyazawa K, Tomoda A, Konishi M, Ubukata H, Tabuchi T. Rapid decrease of intracellular pH associated with inhibition of Na+/H+ exchanger precedes apoptotic events in the MNK45 and MNK74 gastric cancer cell lines treated with 2-aminophenoxazine-3-one. Oncology Reports. 2011;25(2):341–346.  [PubMed]

32. Di Sario A, Bendia E, Omenetti A, De Minicis S, Marzioni M, Kleemann HW, Candelaresi C, Saccomanno S, Alpini G, Benedetti A. Selective inhibition of ion transport mechanisms regulating intracellular pH reduces proliferation and induces apoptosis in cholangiocarcinoma cells. Digestive and Liver Disease: Official Journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. 2007;39(1):60–69.  [PubMed]

33. Roepe PD. Analysis of the steady-state and initial rate of doxorubicin efflux from a series of multidrug-resistant cells expressing different levels of P-glycoprotein. Biochemistry. 1992;31(50):12555–12564.  [PubMed]

34. Murakami T, Shibuya I, Ise T, Chen ZS, Akiyama S, Nakagawa M, Izumi H, Nakamura T, Matsuo K, Yamada Y, Kohno K. Elevated expression of vacuolar proton pump genes and cellular PH in cisplatin resistance. International Journal of Cancer. Journal International Du Cancer. 2001;93(6):869–874.[PubMed]

35. Martinez-Zaguilan R, Raghunand N, Lynch RM, Bellamy W, Martinez GM, Rojas B, Smith D, Dalton WS, Gillies RJ. pH and drug resistance. I. Functional expression of plasmalemmal V-type H+-ATPase in drug-resistant human breast carcinoma cell lines. Biochemical Pharmacology. 1999;57(9):1037–1046.[PubMed]

36. Keizer HG, Joenje H. Increased cytosolic pH in multidrug-resistant human lung tumor cells: effect of verapamil. Journal of the National Cancer Institute. 1989;81(9):706–709.  [PubMed]

37. Altan N, Chen Y, Schindler M, Simon SM. Defective acidification in human breast tumor cells and implications for chemotherapy. The Journal of Experimental Medicine. 1998;187(10):1583–1598.[PMC free article]  [PubMed]

38. Belhoussine R, Morjani H, Sharonov S, Ploton D, Manfait M. Characterization of intracellular pH gradients in human multidrug-resistant tumor cells by means of scanning microspectrofluorometry and dual-emission-ratio probes. International Journal of Cancer. Journal International Du Cancer. 1999;81(1):81–89.  [PubMed]

39. Becelli R, Renzi G, Morello R, Altieri F. Intracellular and extracellular tumor pH measurement in a series of patients with oral cancer. The Journal of Craniofacial Surgery. 2007;18(5):1051–1054.  [PubMed]

40. Raghunand N, Mahoney B, van Sluis R, Baggett B, Gillies RJ. Acute metabolic alkalosis enhances response of C3H mouse mammary tumors to the weak base mitoxantrone. Neoplasia (New York, N.Y.) 2001;3(3):227–235. [PMC free article]  [PubMed]

41. Simon S, Roy D, Schindler M. Intracellular pH and the control of multidrug resistance. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(3):1128–1132.[PMC free article]  [PubMed]

42. Ouar Z, Bens M, Vignes C, Paulais M, Pringel C, Fleury J, Cluzeaud F, Lacave R, Vandewalle A. Inhibitors of vacuolar H+-ATPase impair the preferential accumulation of daunomycin in lysosomes and reverse the resistance to anthracyclines in drug-resistant renal epithelial cells. The Biochemical Journal. 2003;370(Pt 1):185–193. [PMC free article]  [PubMed]

43. Federici C, Petrucci F, Caimi S, Cesolini A, Logozzi M, Borghi M, D’Ilio S, Lugini L, Violante N, Azzarito T, Majorani C, Brambilla D, Fais S. Exosome release and low pH belong to a framework of resistance of human melanoma cells to cisplatin. PloS One. 2014;9(2):e88193. [PMC free article][PubMed]

44. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S, De Milito A, Coscia C, Iessi E, Logozzi M, Molinari A, Colone M, Tatti M, Sargiacomo M, Fais S. Microenvironmental pH is a key factor for exosome traffic in tumor cells. The Journal of Biological Chemistry. 2009;284(49):34211–34222.[PMC free article]  [PubMed]

45. Fais S. Proton pump inhibitor-induced tumour cell death by inhibition of a detoxification mechanism. Journal of Internal Medicine. 2010;267(5):515–525.  [PubMed]

46. Nishi T, Forgac M. The vacuolar (H+)-ATPases—nature’s most versatile proton pumps. Nature Reviews. Molecular Cell Biology. 2002;3(2):94–103.  [PubMed]

47. Sennoune SR, Martinez-Zaguilan R. Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer. Journal of Bioenergetics and Biomembranes. 2007;39(5–6):427–433.  [PubMed]

48. Chung C, Mader CC, Schmitz JC, Atladottir J, Fitchev P, Cornwell ML, Koleske AJ, Crawford SE, Gorelick F. The vacuolar-ATPase modulates matrix metalloproteinase isoforms in human pancreatic cancer. Laboratory Investigation; A Journal of technical Methods and Pathology. 2011;91(5):732–743.[PMC free article]  [PubMed]

49. Sennoune SR, Bakunts K, Martinez GM, Chua-Tuan JL, Kebir Y, Attaya MN, Martinez-Zaguilan R. Vacuolar H+-ATPase in human breast cancer cells with distinct metastatic potential: distribution and functional activity. American Journal of Physiology. Cell Physiology. 2004;286(6):C1443–C1452.[PubMed]

50. Martinez-Zaguilan R, Lynch RM, Martinez GM, Gillies RJ. Vacuolar-type H(+)-ATPases are functionally expressed in plasma membranes of human tumor cells. The American Journal of Physiology. 1993;265(4 Pt 1):C1015–C1029.  [PubMed]

51. Xu J, Xie R, Liu X, Wen G, Jin H, Yu Z, Jiang Y, Zhao Z, Yang Y, Ji B, Dong H, Tuo B. Expression and functional role of vacuolar H(+)-ATPase in human hepatocellular carcinoma. Carcinogenesis. 2012;33(12):2432–2440.  [PubMed]

52. Avnet S, Di Pompo G, Lemma S, Salerno M, Perut F, Bonuccelli G, Granchi D, Zini N, Baldini N. V-ATPase is a candidate therapeutic target for Ewing sarcoma. Biochimica et Biophysica Acta. 2013;1832(8):1105–1116.  [PubMed]

53. Philippe JM, Dubois JM, Rouzaire-Dubois B, Cartron PF, Vallette F, Morel N. Functional expression of V-ATPases in the plasma membrane of glial cells. Glia. 2002;37(4):365–373.  [PubMed]

54. Hinton A, Sennoune SR, Bond S, Fang M, Reuveni M, Sahagian GG, Jay D, Martinez-Zaguilan R, Forgac M. Function of a subunit isoforms of the V-ATPase in pH homeostasis and in vitro invasion of MDA-MB231 human breast cancer cells. The Journal of Biological Chemistry. 2009;284(24):16400–16408. [PMC free article]  [PubMed]

55. Lu Q, Lu S, Huang L, Wang T, Wan Y, Zhou CX, Zhang C, Zhang Z, Li X. The expression of V-ATPase is associated with drug resistance and pathology of non-small cell lung cancer. Diagnostic Pathology. 2013;8:145. [PMC free article]  [PubMed]

56. Michel V, Licon-Munoz Y, Trujillo K, Bisoffi M, Parra KJ. Inhibitors of vacuolar ATPase proton pumps inhibit human prostate cancer cell invasion and prostate-specific antigen expression and secretion. International Journal of Cancer. Journal International Du Cancer. 2013;132(2):E1–E10. [PMC free article][PubMed]

57. Nishisho T, Hata K, Nakanishi M, Morita Y, Sun-Wada GH, Wada Y, Yasui N, Yoneda T. The a3 isoform vacuolar type H(+)-ATPase promotes distant metastasis in the mouse B16 melanoma cells. Molecular Cancer Research: MCR. 2011;9(7):845–855.  [PubMed]

58. Luciani F, Spada M, De Milito A, Molinari A, Rivoltini L, Montinaro A, Marra M, Lugini L, Logozzi M, Lozupone F, Federici C, Iessi E, Parmiani G, Arancia G, Belardelli F, Fais S. Effect of proton pump inhibitor pretreatment on resistance of solid tumors to cytotoxic drugs. Journal of the National Cancer Institute. 2004;96(22):1702–1713.  [PubMed]

59. De Milito A, Marino ML, Fais S. A rationale for the use of proton pump inhibitors as antineoplastic agents. Current Pharmaceutical Design. 2012;18(10):1395–1406.  [PubMed]

60. Xu K, Mao X, Mehta M, Cui J, Zhang C, Mao F, Xu Y. Elucidation of how cancer cells avoid acidosis through comparative transcriptomic data analysis. PloS One. 2013;8(8):e71177. [PMC free article][PubMed]

61. Katara, G.K., Jaiswal, M.K., Kulshrestha, A., Kolli, B., Gilman-Sachs, A. & Beaman, K.D. (2013). Tumor-associated vacuolar ATPase subunit promotes tumorigenic characteristics in macrophages. Oncogene.  [PubMed]

62. Huang L, Lu Q, Han Y, Li Z, Zhang Z, Li X. ABCG2/V-ATPase was associated with the drug resistance and tumor metastasis of esophageal squamous cancer cells. Diagnostic Pathology. 2012;7:180.[PMC free article]  [PubMed]

63. Garcia-Garcia A, Perez-Sayans Garcia M, Rodriguez MJ, Antunez-Lopez J, Barros-Angueira F, Somoza-Martin M, Gandara-Rey JM, Aguirre-Urizar JM. Immunohistochemical localization of C1 subunit of V-ATPase (ATPase C1) in oral squamous cell cancer and normal oral mucosa. Biotechnic & Histochemistry: Official Publication of the Biological Stain Commission. 2012;87(2):133–139.  [PubMed]

64. Ohta T, Numata M, Yagishita H, Futagami F, Tsukioka Y, Kitagawa H, Kayahara M, Nagakawa T, Miyazaki I, Yamamoto M, Iseki S, Ohkuma S. Expression of 16 kDa proteolipid of vacuolar-type H(+)-ATPase in human pancreatic cancer. British Journal of Cancer. 1996;73(12):1511–1517. [PMC free article][PubMed]

65. De Milito A, Canese R, Marino ML, Borghi M, Iero M, Villa A, Venturi G, Lozupone F, Iessi E, Logozzi M, Della Mina P, Santinami M, Rodolfo M, Podo F, Rivoltini L, Fais S. pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity. International Journal of Cancer. Journal International Du Cancer. 2010;127(1):207–219.  [PubMed]

66. Malo ME, Fliegel L. Physiological role and regulation of the Na+/H+ exchanger. Canadian Journal of Physiology and Pharmacology. 2006;84(11):1081–1095.  [PubMed]

67. Daniel C, Bell C, Burton C, Harguindey S, Reshkin SJ, Rauch C. The role of proton dynamics in the development and maintenance of multidrug resistance in cancer. Biochimica et Biophysica Acta. 2013;1832(5):606–617.  [PubMed]

68. Harguindey S, Arranz JL, Polo Orozco JD, Rauch C, Fais S, Cardone RA, Reshkin SJ. Cariporide and other new and powerful NHE1 inhibitors as potentially selective anticancer drugs–an integral molecular/biochemical/metabolic/clinical approach after one hundred years of cancer research. Journal of Translational Medicine. 2013;11:282. [PMC free article]  [PubMed]

69. Amith SR, Fliegel L. Regulation of the Na+/H+ exchanger (NHE1) in breast cancer metastasis. Cancer Research. 2013;73(4):1259–1264.  [PubMed]

70. Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen X, Koleske AJ, Condeelis J. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. The Journal of Cell Biology. 2011;195(5):903–920. [PMC free article]  [PubMed]

71. Bourguignon LY, Singleton PA, Diedrich F, Stern R, Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. The Journal of Biological Chemistry. 2004;279(26):26991–27007.  [PubMed]

72. Halestrap AP. The monocarboxylate transporter family—structure and functional characterization. IUBMB Life. 2012;64(1):1–9.  [PubMed]

73. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacology & Therapeutics. 2009;121(1):29–40.  [PubMed]

74. Pinheiro C, Reis RM, Ricardo S, Longatto-Filho A, Schmitt F, Baltazar F. Expression of monocarboxylate transporters 1, 2, and 4 in human tumours and their association with CD147 and CD44. Journal of Biomedicine & Biotechnology. 2010;2010:427694. [PMC free article]  [PubMed]

75. Miranda-Goncalves V, Honavar M, Pinheiro C, Martinho O, Pires MM, Pinheiro C, Cordeiro M, Bebiano G, Costa P, Palmeirim I, Reis RM, Baltazar F. Monocarboxylate transporters (MCTs) in gliomas: expression and exploitation as therapeutic targets. Neuro-Oncology. 2013;15(2):172–188.[PMC free article]  [PubMed]

76. Wahl ML, Owen JA, Burd R, Herlands RA, Nogami SS, Rodeck U, Berd D, Leeper DB, Owen CS. Regulation of intracellular pH in human melanoma: potential therapeutic implications. Molecular Cancer Therapeutics. 2002;1(8):617–628.  [PubMed]

77. Fang J, Quinones QJ, Holman TL, Morowitz MJ, Wang Q, Zhao H, Sivo F, Maris JM, Wahl ML. The H+-linked monocarboxylate transporter (MCT1/SLC16A1): a potential therapeutic target for high-risk neuroblastoma. Molecular Pharmacology. 2006;70(6):2108–2115.  [PubMed]

78. Sonveaux P, Vegran F, Schroeder T, Wergin MC, Verrax J, Rabbani ZN, De Saedeleer CJ, Kennedy KM, Diepart C, Jordan BF, Kelley MJ, Gallez B, Wahl ML, Feron O, Dewhirst MW. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. The Journal of Clinical Investigation. 2008;118(12):3930–3942. [PMC free article]  [PubMed]

79. Swietach P, Hulikova A, Vaughan-Jones RD, Harris AL. New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene. 2010;29(50):6509–6521.  [PubMed]

80. Swietach P, Vaughan-Jones RD, Harris AL. Regulation of tumor pH and the role of carbonic anhydrase 9. Cancer Metastasis Reviews. 2007;26(2):299–310.  [PubMed]

81. Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Research. 2000;60(24):7075–7083.  [PubMed]

82. Pastorek J, Pastorekova S, Callebaut I, Mornon JP, Zelnik V, Opavsky R, Zat’ovicova M, Liao S, Portetelle D, Stanbridge EJ. Cloning and characterization of MN, a human tumor-associated protein with a domain homologous to carbonic anhydrase and a putative helix-loop-helix DNA binding segment. Oncogene. 1994;9(10):2877–2888.  [PubMed]

83. De Simone G, Supuran CT. Carbonic anhydrase IX: biochemical and crystallographic characterization of a novel antitumor target. Biochimica et Biophysica Acta. 2010;1804(2):404–409.  [PubMed]

84. Pastorekova S, Parkkila S, Parkkila AK, Opavsky R, Zelnik V, Saarnio J, Pastorek J. Carbonic anhydrase IX, MN/CA IX: analysis of stomach complementary DNA sequence and expression in human and rat alimentary tracts. Gastroenterology. 1997;112(2):398–408.  [PubMed]

85. Chia SK, Wykoff CC, Watson PH, Han C, Leek RD, Pastorek J, Gatter KC, Ratcliffe P, Harris AL. Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2001;19(16):3660–3668.  [PubMed]

86. Giatromanolaki A, Koukourakis MI, Sivridis E, Pastorek J, Wykoff CC, Gatter KC, Harris AL. Expression of hypoxia-inducible carbonic anhydrase-9 relates to angiogenic pathways and independently to poor outcome in non-small cell lung cancer. Cancer Research. 2001;61(21):7992–7998.  [PubMed]

87. Generali D, Fox SB, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield SM, Bruzzi P, Bersiga A, Allevi G, Milani M, Aguggini S, Dogliotti L, Bottini A, Harris AL. Role of carbonic anhydrase IX expression in prediction of the efficacy and outcome of primary epirubicin/tamoxifen therapy for breast cancer. Endocrine-Related Cancer. 2006;13(3):921–930.  [PubMed]

88. Roos A, Boron WF. Intracellular pH. Physiological Reviews. 1981;61(2):296–434.  [PubMed]

89. Cardone RA, Casavola V, Reshkin SJ. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nature Reviews. Cancer. 2005;5(10):786–795.  [PubMed]

90. Harguindey S, Orive G, Luis Pedraz J, Paradiso A, Reshkin SJ. The role of pH dynamics and the Na+/H+ antiporter in the etiopathogenesis and treatment of cancer. Two faces of the same coin–one single nature. Biochimica et Biophysica Acta. 2005;1756(1):1–24.  [PubMed]

91. Reshkin SJ, Cardone RA, Harguindey S. Na+-H+ exchanger, pH regulation and cancer. Recent Patents on Anti-Cancer Drug Discovery. 2013;8(1):85–99.  [PubMed]

92. Harguindey S, Arranz JL, Wahl ML, Orive G, Reshkin SJ. Proton transport inhibitors as potentially selective anticancer drugs. Anticancer Research. 2009;29(6):2127–2136.  [PubMed]

93. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Rey JM, Garcia-Garcia A. V-ATPase inhibitors and implication in cancer treatment. Cancer Treatment Reviews. 2009;35(8):707–713.  [PubMed]

94. Perez-Sayans M, Somoza-Martin JM, Barros-Angueira F, Diz PG, Rey JM, Garcia-Garcia A. Multidrug resistance in oral squamous cell carcinoma: the role of vacuolar ATPases. Cancer Letters. 2010;295(2):135–143.  [PubMed]

95. Bowman EJ, Siebers A, Altendorf K. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant cells. Proceedings of the National Academy of Sciences of the United States of America. 1988;85(21):7972–7976. [PMC free article]  [PubMed]

96. Boyd MR, Farina C, Belfiore P, Gagliardi S, Kim JW, Hayakawa Y, Beutler JA, McKee TC, Bowman BJ, Bowman EJ. Discovery of a novel antitumor benzolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-atpases. The Journal of Pharmacology and Experimental Therapeutics. 2001;297(1):114–120.  [PubMed]

97. Beutler JA, McKee TC. Novel marine and microbial natural product inhibitors of vacuolar ATPase. Current Medicinal Chemistry. 2003;10(9):787–796.  [PubMed]

98. Lu X, Qin W, Li J, Tan N, Pan D, Zhang H, Xie L, Yao G, Shu H, Yao M, Wan D, Gu J, Yang S. The growth and metastasis of human hepatocellular carcinoma xenografts are inhibited by small interfering RNA targeting to the subunit ATP6L of proton pump. Cancer Research. 2005;65(15):6843–6849.  [PubMed]

99. You H, Jin J, Shu H, Yu B, De Milito A, Lozupone F, Deng Y, Tang N, Yao G, Fais S, Gu J, Qin W. Small interfering RNA targeting the subunit ATP6L of proton pump V-ATPase overcomes chemoresistance of breast cancer cells. Cancer Letters. 2009;280(1):110–119.  [PubMed]

100. Capecci J, Forgac M. The function of vacuolar ATPase (V-ATPase) a subunit isoforms in invasiveness of MCF10a and MCF10CA1a human breast cancer cells. The Journal of Biological Chemistry. 2013;288(45):32731–32741. [PMC free article]  [PubMed]

101. Mullin JM, Gabello M, Murray LJ, Farrell CP, Bellows J, Wolov KR, Kearney KR, Rudolph D, Thornton JJ. Proton pump inhibitors: actions and reactions. Drug Discovery Today. 2009;14(13–14):647–660.  [PubMed]

102. Olbe L, Carlsson E, Lindberg P. A proton-pump inhibitor expedition: the case histories of omeprazole and esomeprazole. Nature Reviews. Drug Discovery. 2003;2(2):132–139.  [PubMed]

103. Ferrari S, Perut F, Fagioli F, Brach Del Prever A, Meazza C, Parafioriti A, Picci P, Gambarotti M, Avnet S, Baldini N, Fais S. Proton pump inhibitor chemosensitization in human osteosarcoma: from the bench to the patients’ bed. Journal of Translational Medicine. 2013;11:268. [PMC free article]  [PubMed]

104. Chen M, Zou X, Luo H, Cao J, Zhang X, Zhang B, Liu W. Effects and mechanisms of proton pump inhibitors as a novel chemosensitizer on human gastric adenocarcinoma (SGC7901) cells. Cell Biology International. 2009;33(9):1008–1019.  [PubMed]

105. Chen M, Huang SL, Zhang XQ, Zhang B, Zhu H, Yang VW, Zou XP. Reversal effects of pantoprazole on multidrug resistance in human gastric adenocarcinoma cells by down-regulating the V-ATPases/mTOR/HIF-1alpha/P-gp and MRP1 signaling pathway in vitro and in vivoJournal of Cellular Biochemistry. 2012;113(7):2474–2487. [PMC free article]  [PubMed]

106. Udelnow A, Kreyes A, Ellinger S, Landfester K, Walther P, Klapperstueck T, Wohlrab J, Henne-Bruns D, Knippschild U, Wurl P. Omeprazole inhibits proliferation and modulates autophagy in pancreatic cancer cells. PloS One. 2011;6(5):e20143. [PMC free article]  [PubMed]

107. Spugnini EP, Baldi A, Buglioni S, Carocci F, de Bazzichini GM, Betti G, Pantaleo I, Menicagli F, Citro G, Fais S. Lansoprazole as a rescue agent in chemoresistant tumors: a phase I/II study in companion animals with spontaneously occurring tumors. Journal of Translational Medicine. 2011;9:221.[PMC free article]  [PubMed]

108. De Milito A, Iessi E, Logozzi M, Lozupone F, Spada M, Marino ML, Federici C, Perdicchio M, Matarrese P, Lugini L, Nilsson A, Fais S. Proton pump inhibitors induce apoptosis of human B-cell tumors through a caspase-independent mechanism involving reactive oxygen species. Cancer Research. 2007;67(11):5408–5417.  [PubMed]

109. Marino ML, Fais S, Djavaheri-Mergny M, Villa A, Meschini S, Lozupone F, Venturi G, Della Mina P, Pattingre S, Rivoltini L, Codogno P, De Milito A. Proton pump inhibition induces autophagy as a survival mechanism following oxidative stress in human melanoma cells. Cell Death & Disease. 2010;1:e87.[PMC free article]  [PubMed]

110. Yeo M, Kim DK, Kim YB, Oh TY, Lee JE, Cho SW, Kim HC, Hahm KB. Selective induction of apoptosis with proton pump inhibitor in gastric cancer cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2004;10(24):8687–8696.  [PubMed]

111. Shen W, Zou X, Chen M, Shen Y, Huang S, Guo H, Zhang L, Liu P. Effect of pantoprazole on human gastric adenocarcinoma SGC7901 cells through regulation of phosphoLRP6 expression in Wnt/beta-catenin signaling. Oncology Reports. 2013;30(2):851–855.  [PubMed]

112. Perut F, Avnet S, Fotia C, Baglio SR, Salerno M, Hosogi S, Kusuzaki K, Baldini N. V-ATPase as an effective therapeutic target for sarcomas. Experimental Cell Research. 2014;320(1):21–32.  [PubMed]

113. Bellone M, Calcinotto A, Filipazzi P, De Milito A, Fais S, Rivoltini L. The acidity of the tumor microenvironment is a mechanism of immune escape that can be overcome by proton pump inhibitors. Oncoimmunology. 2013;2(1):e22058. [PMC free article]  [PubMed]

114. Calcinotto A, Filipazzi P, Grioni M, Iero M, De Milito A, Ricupito A, Cova A, Canese R, Jachetti E, Rossetti M, Huber V, Parmiani G, Generoso L, Santinami M, Borghi M, Fais S, Bellone M, Rivoltini L. Modulation of microenvironment acidity reverses anergy in human and murine tumor-infiltrating T lymphocytes. Cancer Research. 2012;72(11):2746–2756.  [PubMed]

115. Vishvakarma NK, Singh SM. Immunopotentiating effect of proton pump inhibitor pantoprazole in a lymphoma-bearing murine host: Implication in antitumor activation of tumor-associated macrophages. Immunology Letters. 2010;134(1):83–92.  [PubMed]

116. Singh, S., Garg, S.K., Singh, P.P., Iyer, P.G. & El-Serag, H.B. (2013). Acid-suppressive medications and risk of oesophageal adenocarcinoma in patients with Barrett’s oesophagus: a systematic review and meta-analysis. Gut. [PMC free article]  [PubMed]

117. Kastelein F, Spaander MC, Steyerberg EW, Biermann K, Valkhoff VE, Kuipers EJ, Bruno MJ, ProBar Study Group Proton pump inhibitors reduce the risk of neoplastic progression in patients with Barrett’s esophagus. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association. 2013;11(4):382–388.  [PubMed]

118. Harley W, Floyd C, Dunn T, Zhang XD, Chen TY, Hegde M, Palandoken H, Nantz MH, Leon L, Carraway KL, 3rd, Lyeth B, Gorin FA. Dual inhibition of sodium-mediated proton and calcium efflux triggers non-apoptotic cell death in malignant gliomas. Brain Research. 2010;1363:159–169.[PMC free article]  [PubMed]

119. Yang X, Wang D, Dong W, Song Z, Dou K. Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. Cancer Letters. 2010;295(2):198–204.  [PubMed]

120. Wong P, Kleemann HW, Tannock IF. Cytostatic potential of novel agents that inhibit the regulation of intracellular pH. British Journal of Cancer. 2002;87(2):238–245. [PMC free article]  [PubMed]

121. Chang WH, Liu TC, Yang WK, Lee CC, Lin YH, Chen TY, Chang JG. Amiloride modulates alternative splicing in leukemic cells and resensitizes Bcr-AblT315I mutant cells to imatinib. Cancer Research. 2011;71(2):383–392.  [PubMed]

122. Miraglia E, Viarisio D, Riganti C, Costamagna C, Ghigo D, Bosia A. Na+/H+ exchanger activity is increased in doxorubicin-resistant human colon cancer cells and its modulation modifies the sensitivity of the cells to doxorubicin. International Journal of Cancer. Journal International Du Cancer. 2005;115(6):924–929.  [PubMed]

123. Lauritzen G, Jensen MB, Boedtkjer E, Dybboe R, Aalkjaer C, Nylandsted J, Pedersen SF. NBCn1 and NHE1 expression and activity in DeltaNErbB2 receptor-expressing MCF-7 breast cancer cells: contributions to pHi regulation and chemotherapy resistance. Experimental Cell Research. 2010;316(15):2538–2553.  [PubMed]

124. Kellen JA, Mirakian A, Kolin A. Antimetastatic effect of amiloride in an animal tumour model. Anticancer Research. 1988;8(6):1373–1376.  [PubMed]

125. Matthews H, Ranson M, Kelso MJ. Anti-tumour/metastasis effects of the potassium-sparing diuretic amiloride: an orally active anti-cancer drug waiting for its call-of-duty? International Journal of Cancer. Journal International Du Cancer. 2011;129(9):2051–2061.  [PubMed]

126. Reshkin SJ, Bellizzi A, Cardone RA, Tommasino M, Casavola V, Paradiso A. Paclitaxel induces apoptosis via protein kinase A- and p38 mitogen-activated protein-dependent inhibition of the Na+/H+ exchanger (NHE) NHE isoform 1 in human breast cancer cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2003;9(6):2366–2373.  [PubMed]

127. Pacchiano F, Carta F, McDonald PC, Lou Y, Vullo D, Scozzafava A, Dedhar S, Supuran CT. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis. Journal of Medicinal Chemistry. 2011;54(6):1896–1902.  [PubMed]

128. Touisni N, Maresca A, McDonald PC, Lou Y, Scozzafava A, Dedhar S, Winum JY, Supuran CT. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. Journal of Medicinal Chemistry. 2011;54(24):8271–8277.  [PubMed]

129. Lou Y, McDonald PC, Oloumi A, Chia S, Ostlund C, Ahmadi A, Kyle A, Auf dem Keller U, Leung S, Huntsman D, Clarke B, Sutherland BW, Waterhouse D, Bally M, Roskelley C, Overall CM, Minchinton A, Pacchiano F, Carta F, Scozzafava A, Touisni N, Winum JY, Supuran CT, Dedhar S. Targeting tumor hypoxia: suppression of breast tumor growth and metastasis by novel carbonic anhydrase IX inhibitors. Cancer Research. 2011;71(9):3364–3376.  [PubMed]

130. Dubois L, Peeters S, Lieuwes NG, Geusens N, Thiry A, Wigfield S, Carta F, McIntyre A, Scozzafava A, Dogne JM, Supuran CT, Harris AL, Masereel B, Lambin P. Specific inhibition of carbonic anhydrase IX activity enhances the in vivo therapeutic effect of tumor irradiation. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 2011;99(3):424–431.  [PubMed]

131. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. The Biochemical Journal. 1999;343(Pt 2):281–299. [PMC free article]  [PubMed]

132. Colen CB, Shen Y, Ghoddoussi F, Yu P, Francis TB, Koch BJ, Monterey MD, Galloway MP, Sloan AE, Mathupala SP. Metabolic targeting of lactate efflux by malignant glioma inhibits invasiveness and induces necrosis: an in vivo study. Neoplasia (New York, N.Y.) 2011;13(7):620–632. [PMC free article][PubMed]

133. Matsubara T, Kusuzaki K, Matsumine A, Shintani K, Satonaka H, Uchida A. Acridine orange used for photodynamic therapy accumulates in malignant musculoskeletal tumors depending on pH gradient. Anticancer Research. 2006;26(1A):187–193.  [PubMed]

134. Hashiguchi S, Kusuzaki K, Murata H, Takeshita H, Hashiba M, Nishimura T, Ashihara T, Hirasawa Y. Acridine orange excited by low-dose radiation has a strong cytocidal effect on mouse osteosarcoma. Oncology. 2002;62(1):85–93.  [PubMed]

135. Kusuzaki K, Aomori K, Suginoshita T, Minami G, Takeshita H, Murata H, Hashiguchi S, Ashihara T, Hirasawa Y. Total tumor cell elimination with minimum damage to normal tissues in musculoskeletal sarcomas following photodynamic therapy with acridine orange. Oncology. 2000;59(2):174–180.[PubMed]

136. Kusuzaki K, Hosogi S, Ashihara E, Matsubara T, Satonaka H, Nakamura T, Matsumine A, Sudo A, Uchida A, Murata H, Baldini N, Fais S, Marunaka Y. Translational research of photodynamic therapy with acridine orange which targets cancer acidity. Current Pharmaceutical Design. 2012;18(10):1414–1420.[PubMed]

137. Kusuzaki K, Murata H, Matsubara T, Miyazaki S, Shintani K, Seto M, Matsumine A, Hosoi H, Sugimoto T, Uchida A. Clinical outcome of a novel photodynamic therapy technique using acridine orange for synovial sarcomas. Photochemistry and Photobiology. 2005;81(3):705–709.  [PubMed]

138. Kusuzaki K, Murata H, Matsubara T, Miyazaki S, Okamura A, Seto M, Matsumine A, Hosoi H, Sugimoto T, Uchida A. Clinical trial of photodynamic therapy using acridine orange with/without low dose radiation as new limb salvage modality in musculoskeletal sarcomas. Anticancer Research. 2005;25(2B):1225–1235.  [PubMed]

139. Matsubara T, Kusuzaki K, Matsumine A, Murata H, Nakamura T, Uchida A, Sudo A. Clinical outcomes of minimally invasive surgery using acridine orange for musculoskeletal sarcomas around the forearm, compared with conventional limb salvage surgery after wide resection. Journal of Surgical Oncology. 2010;102(3):271–275.  [PubMed]

140. Liu, J., Huang, Y., Kumar, A., Tan, A., Jin, S., Mozhi, A. & Liang, X.J. (2013). pH-Sensitive nano-systems for drug delivery in cancer therapy. Biotechnology Advances.  [PubMed]

141. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–674.[PubMed]

%d bloggers like this: