Category Archives: Water

A Natural Healthy and Legal Way To Increase Blood Volume – Pass It Along To Lance

There were several questions that came to mind after watching the Oprah Winfrey and Lance Armstrong interview where Lance finally admitted to using EPO, human-growth hormone, testosterone and blood doping.

So What is Blood Doping?

Blood doping is an illicit method of improving athletic performance by artificially boosting the blood’s ability to carry and deliver more oxygen to the connective tissues, including the muscules.

In many cases, blood doping increases the red blood count and its main oxygen carrying molecule, hemoglobin.  So, increasing hemoglobin allows higher amounts of oxygen to reach and alkalize an athlete’s muscles.  This can improve stamina and performance, particularly in long-distance events, such as long-distance running and cycling.

Blood doping is banned by the International Olympic Committe and other sports organizations.

What Are Types of Blood Doping?

The three widely used types of blood doping are:

1) Blood transfusions
2) Injections of erythropoetin (EPO), and 
3) Injections of synthetic oxygen oxygen carriers.

Here are some more details about each of these types of blood doping:
Blood transfusions.  In normal medical practice, patients may undergo blood transfusions to replace blood lost due to injury, surgery or chemotherapy. Transfusions also are given to patients who suffer from low red blood cell counts caused by anemiakidney failure, cancer and chemotherapy treatments.
Illicit blood transfusions are used by athletes to boost athletic performance. There are two types.
Autologous transfusion. This involves a transfusion of the athlete’s own blood, which is drawn and then stored for future use.  Most commonly this involves the removal of two units (approximately 2 pints!) of the athletes blood several weeks prior to competition. The blood is then frozen until 1-2 days before the competition, when it is thawed and injected back into the athlete. This is known as autologous blood doping.
Homologous transfusion. In this type of transfusion, athletes use the blood of someone else with the same blood type and then injected straight into the athlete.
EPO Injections

EPO is a hormone produced by the kidney. It regulates the body’s production of red blood cells.  In medical practice, EPO injections are given to stimulate the production of red blood cells. For example, a synthetic EPO can be used to treat patients with anemia related to chronic or end-stage kidney disease or cancer and its treatment with chemotherapy.
Athletes using EPO do so to encourage their bodies to produce higher than normal amounts of red blood cells, hemoglobin and blood volume called hematocrit to enhance athletic performance.
Synthetic Oxygen Carriers 

These are chemicals that have the ability to carry oxygen. Two examples are:
  • HBOCs (hemoglobin-based oxygen carriers)
  • PFCs (perfluorocarbons)
Synthetic oxygen carriers have a legitimate medical use as emergency therapy. It is used when a patient needs a blood transfusion but:
  • human blood is not available
  • there is a high risk of blood out-fection (A blood outfection is when the blood is breaking down due to metabolic and/or dietary acids or from acidic drug use.)
  • there isn’t enough time to find the proper match of blood type
Athletes use synthetic oxygen carriers to achieve the same performance-enhancing effects of other types of blood doping: increased oxygen in the blood carried by the hemoglobin in red blood cells that helps reduce tissue acidosis in the connective tissues and muscles.  This results in reduced tissue or muscle breakdown and tissue acidosis that causes inflammation and pain.

So what could have Lance Armstrong done differently to achieve athletic superiority in his sport without drugs and blood fransfusions? And, how could have Lance Armstrong naturally increased his red blood cell count, hemaglobin and hematocrit and in turn increased his VO2 or oxygen volume to his connective tissues and muscles thus minimizing acid build-up and cellular breakdown, without taking hormones, steroids, EPO and blood transfusions known as blood doping?

Having been a professional athlete myself I have been doing natural blood doping successfully for myself (My blood counts run consistently – RBC count 5.2 million/mcL, Hemoglobin 17.2 g/dl, Hematocrit 53%, White Blood Count 3.8 thousands/mcL, Platelet Count 156 thousands/mcL, Glucose 80 mg/dl, Sodium 146 mEq/L, Chloride 106 mEq/L, Potassium 5 mEq/L, and Calcium 9.8 mg/dl, just to name a few of the most important markers in the blood), other athletes (including Professional and Olympic athletes) and cancer patients around the World for years with NO negative side-effects.

IT IS SIMPLE – IT IS SAFE – IT IS NATURAL – IT IS SMART and IT IS LEGAL!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! No side-effects except for increased health, energy and vitality.

Pass this on to Lance Armstrong?

Here is the formula for natural blood building without medical drugs, hormones, steroids, or blood transfusions (based upon 70kg body):

1)  Drink 250ml of pH Miracle liquid Chlorophyll.  Chlorophyll is the concentrated blood of green plants and is identical to human hemoglobin except for the center atom of magnesium in chlorophyll.  Drinking the blood of green plants will increase hemoglobin in less than two weeks.

2)  Drink 6 liters of pH Miracle Greens with 5 drops of the puripHy per liter.  The pH Miracle greens contains concentrated (28 to 1 concentration) grasses, fruit and vegetables that will increase red blood cell count and blood volume as indicated on a Comprehensive Blood Count Test.  The pH Miracle puripHy drops will increase the pH of the green drink and help to buffer metabolic and dietary acids that break down connective tissue and weaken muscles.

3)  Ingest 16 portions of alkalizing green fruit and vegetables.  Ingesting liberal amounts of green fruit and vegetables daily will help to maintain the high levels of red blood cells, hemoglobin and hematocrit.

4)  Drink 100ml of the pH Miracle Omega 3, 6 and 9 oil.  The ingestin of polyunsaturated oils from hemp, borage and flax will provide the necessary lipids for building the membranes of stem cells and blood cells and keeping them strong.

5)  Ingest 1 scoop of pHour salts in the morning, 1 sccop at night and 1 scoop any time the pH of the urine drops below 7.2.  The pHour salts contain four foundational mineral salts for the purpose of maintaining the alkaline design of the body fluids and reduce and/or eliminate the metabolic and respiratory acids that build-up during strenuous exercise such as carbonic acid and lactic acid.

6)  Spray the pHlavor salts orally to replace electrolytes and reduce the acids that create lightheadedness, dizziness, cold hands, cold feet, poor circulation, low energy, just to name a few symptoms of low mineral salts.

7) And, finally take 2 scoops twice a day of the pH Miracle L-Arginine Max to improve blood and lymph circulation by breaking up acidic mucous, plaque, calcifications, and cysts in the blood, lymph and connective tissue.

When an athlete follows the above recommendations based upon my clinical research for over twenty years he or she will consistantly show increases in their red blood cell count approaching or exceeding 5 million/mcL, hemoglobin increases approaching or exceeding 15 g/dl, and hematocrit increases approaching or exceeding a volume of  50 percent or higher.

The following article suggests other incredible benefits for eating and drinking daily green fruit and vegetables:

http://articlesofhealth.blogspot.com/2013/01/another-reason-to-eat-and-drink-your.html

Cholesterol Lowering Drugs Cause Heart Attacks, Strokes and Diabetes!

The higher your cholesterol the lower your risk for heart attack or stroke when you are living and eating the standard acid lifestyle and diet (SAD). And, the lower your cholesterol the higher your risk for a heart attack or stroke. (1)

The first graph shows the world famous Lancet published Framingham Study after ten years and the effects of high cholesterol. The second graph shows the study after twenty years. The interesting thing is everyone knows about the first ten years but few people, including doctors have been informed about the Framingham study after twenty years. The Framingham study is the largest and longest reliable study on the effects of chloesterol on the heart and vascular system.(1)
 
Ten years later the study NOW indicates that high cholesterol is NOT a risk for heart attack or stroke. When cholesterol exceeded 300 mg/dl the risk of heart disease was significantly reduced. Eighty percent of people who developed heart disease had cholesterol less than 200 mg/dl.(1)
 
Dr Robert O. Young’s has stated in his research that all heart attacks and strokes are caused by acids from an acidic diet and metabolic acids and NOT high cholesterol. He has suggested that cholesterol, especially low density lipoproteins are created by the body to buffer and protect the blood, organs and tissues from dietary and metaobolic acids. He states the best way to protect the heart and the vascular system is to maintain the alkaline design of the body with an alkaline lifestyle and diet as outline in his book, The pH Miracle Revised and Updated.(2)
 
Just recently the Food and Drug Administration issued new safety warnings about a popular class of drugs used to control and lower cholesterol levels. The FDA says the drugs, known as statins, can cause several side effects, including cognitive problems such as memory lapses and confusion. But the agency is stressing that the side effects appear to be rare and not serious. It is Dr Robert O Young’s research that suggests taking any drug, like statin drugs that lowers LDL cholesterol without removing acidic lifestyle and dietary choices is a risk for heart attack, stroke and other dis-eases like diabetes. Dr Young has lowered cholesterol sucessfully in all cases of hyperchlolesterolemia without drugs by just changing the diet and lifestyle to an alkaline pH Miracle lifestyle and diet that restores the alkaline design of the body.(2)
 
One of Dr. Young’s research clients Maren Hale was diagnosed with familial hypercholesterolemia and hypertriglycerides with LDL’s over 400 mg/dl and triglycerides over 200 mg/dl. She was also overweight. Over a period of four years Maren lost over 70 pounds and lowered her cholesterol and triglycerides to healthy normal ranges on the pH Miracle Lifesyle and Diet. Maren and her family and extended family have been a research study of the University of Utah for familial hypercholesterolemia for over 40 years. Maren was the first of all family members to lower her cholesterol and triglycerides to normal ranges due to her commitment to living a pH Miracle Lifesyle and Diet.(2)
 

 
 
The following is an article that appeared in the Wall Street Journal:
 

The FDA raised safety concerns about the popular class of cholesterol-fighting drugs. The drugs have been taken for years by tens of millions of people and include brand names such as Lipitor and Crestor. Ron Winslow reports on the News Hub. Photo: Getty Images.

The Food and Drug Administration warned that patients taking cholesterol-fighting statins face a small increase in the risk of higher blood-sugar levels and of being diagnosed with diabetes, raising concerns about one of the country’s most widely prescribed groups of drugs.

The federal safety agency said Tuesday it plans to require drug makers to add the diabetes-risk language to the “warnings and precautions” section of the labels on statin drugs.

Statins include top-selling brand names such as Lipitor, Crestor, Zocor and a dozen or so other branded and generic versions under various names. The drugs are prescribed to more than 20 million Americans a year, at a cost of more than $14 billion in 2011, according to the research firm IMS Health.

The warning isn’t expected to prompt doctors to stop prescribing statins for patients with multiple risk factors for heart attack. Cardiologists said for many patients, the benefits of statins still outweigh these risks.

The diabetes issue is “real” but “not a huge effect,” said Robert Califf, vice chancellor for clinical research and a cardiologist at Duke University Medical Center. “Informing people is a good thing, but for the vast majority of people who really need to be on a statin, this shouldn’t change what they do.”

But some physicians cautioned that the risk wasn’t insignificant and that patients at lower risk for heart problems might want to reassess whether they should remain on statins.

“The diabetes issue is a really big deal. We’re overcooking the statin use,” said Eric J. Topol, a prominent cardiologist and chief academic officer of Scripps Health in LaJolla, Calif.

In addition, the FDA said labels for statin drugs now will contain information about patients experiencing memory loss and confusion, though this side effect was classified as an “adverse reaction” rather than one of the warnings and precautions, a more serious category.

Amy Egan, the FDA’s deputy director for safety of metabolic and endocrinological products, said “these cognitive changes can be quite dramatic” and “sustained” but that they disappear when statin therapy is stopped. Dr. Egan said the agency cannot identify a specific drug or age group of people who might be prone to such cases. She said patients should notify their doctors if these symptoms occur.

Bloomberg News

Cholesterol drugs Lipitor and Zocor are arranged on a counter of a Cambridge, Massachusetts pharmacy in 2006.

The FDA made new labeling recommendations for one specific statin, Mevacor, generically called lovastatin. It said that some medicines like protease drugs used to treat AIDS and drugs for bacterial and fungal infections shouldn’t be taken with Mevacor because of interactions that may lead to muscle injury.

At the same time, the FDA announced that drug makers could remove a label warning that liver enzymes need to be monitored during statin therapy. It cited the fact that “serious liver injury with statins is rare and unpredictable” and that periodic monitoring “does not appear to be effective in detecting or preventing this rare side effect.”

AstraZeneca PLC, which makes Crestor, the only major statin still sold exclusively as a brand-name drug, said in a statement that “the cognitive issues are generally nonserious and reversible upon discontinuation” of a statin. It said reports about increased blood sugar were already included on Crestor labels.

In addition to the pure statins, products that contain statins include Advicor, Simcor and Vytorin. Merck & Co., which makes Zocor and Vytorin, said information for those drugs was “updated” in October in a way that reflects the contents of the FDA’s Tuesday safety advisory. It revised labeling for Mevacor more recently.

The FDA’s action follows analyses of large numbers of statin studies in recent years. In one, published in the Lancet in 2010, researchers looked at 13 studies including 91,140 patients. The researchers concluded that statin therapy “is associated with a slightly increased risk of development of [Type 2] diabetes, but the risk is low both in absolute terms and when compared to the reduction in coronary events.”

Cardiologists differed on how to weigh the findings, especially for the millions of people given the drugs for the prevention of a first heart attack or stroke.

Steven E. Nissen, chairman of cardiovascular medicine at the Cleveland Clinic, said, “There is no question that statins slightly increase the risk of a diabetes diagnosis and of slightly higher blood sugar, but I think this has no impact on the risk-benefit assessment. I know I can lower the [relative] risk of death, stroke and heart attack by about 30%” in patients at high risk of such cardiovascular events.

Dr. Topol said research suggests that for every 200 people who take a statin, 1 will develop diabetes. By comparison, 1 to 2 out of 100 patients at risk for a heart attack will avoid one, he said, adding, “That’s a very narrow margin of benefit,” he said.

Rita Redberg, a cardiologist at the University of California, San Francisco Medical Center, stressed the long-term concerns about diabetes. “We know that diabetes is a significant risk factor for heart disease,” Dr. Redberg said. She said the statin-diabetes link “raises the concern that over time the diabetes risk will outweigh the cholesterol-lowering benefit on overall risk of cardiovascular disease.”

Reference:
(1) Martin MJ et al, Lancet 1986; H-933-936
(2) The pH Miracle Revised and Update, Pub. July 2010, Hachett Publishing

Will Soy Prevent or Reverse Disease?



Will Eating and/or Drinking Soy Prevent or Reverse Dis-ease or So-called Disease?

Cancer is a group of dis-eases characterized by the uncontrolled fermentation and degeneration of body cells. Over 10 million Americans today are cancer survivors, and about 1.4 million Americans are expected to be diagnosed each year.1

“Diet plays an important role in the prevention and treatment of ALL cancerous conditions, and soy protein is one of the leading anti-acid or alkalizing and therefore anti-carcinogenic foods being studied,” stated Dr. Robert O. Young, Director of Research at the pH Miracle Living Center.

SOY FOODS & CANCER

There has been much focus during the past 15 years on the anticancer effects of soy foods.2There are several presumed chemopreventive agents in the soy bean,6 but the isoflavones have received the most attention.3 A particular interest lies in the role of soy foods and isoflavones in reducing the risk of breast and prostate cancer.2

SOY & BREAST CANCER

Data modestly supports the hypothesis that soy food intake may reduce the incidence of breast cancer. A recently published analysis found the relative risk for breast cancer was 95 percent when comparing high- vs. low-soy consumers.5 However, many of the case-control and prospective studies included in this analysis were of poor quality.6

Rodent studies have generally shown that isoflavones, or soy protein, inhibit chemically induced mammary tumors when given prior to tumor initiation7-9, although there are a number of exceptions.10-12 Interestingly, the chemopreventive effects of isoflavones appear to be affected by the background dietary choices.

When the isoflavone genistein was added to the semi-purified diet, chemically induced rodent mammary tumors were not inhibited, but when added to the regular chow diet, tumor development was suppressed by approximately 50 percent.13 This suggests that animal research, which most commonly uses semi-purified diets, may actually underestimate the potential anticarcinogenic effects of soy and other foods.

Soy & Markers of Breast Cancer

In contrast to the animal and epidemiologic data, there is little clinical evidence that soy or isoflavones favorably affect markers of breast cancer risk including breast tissue density,14, 15serum estrogen levels,16, 17 and breast cell proliferation.18 There is limited evidence that estrogen metabolism is favorably affected19 and that menstrual cycle length is increased (which decreases cancer risk).16

Nevertheless, there remains considerable enthusiasm for the possibility that soy food intake contributes to the low breast cancer rate in Japan.

Early Intake of Soy May Reduce Breast Risk

There is both epidemiologic 20-22 and animal 23, 24 data in support of the hypothesis that early soy intake reduces later risk of developing breast cancer. This hypothesis is consistent with mounting evidence that early life influences — parity, lactation, age at menses, birth weight, etc. — impact risk of developing breast cancer.25-36 Studies of migrants suggest that the first 20 years of life have an especially profound impact on risk.36-38 The epidemiologic data suggest just one to two servings of soy foods is protective.

Breaking News – Soy Breast Cancer Study

Soy Breast Cancer Study Holds Promise, But Calls for Further Research

For more than 15 years, soy foods have been actively investigated for their possible role in reducing breast cancer risk. Initial enthusiasm about this hypothesis was based on several observations. These include the low breast cancer rates in Japan, early animal research indicating that soy beans in rodent diets reduced mammary tumor development and evidence suggesting that the isoflavones (phytoestrogens) in soy foods may exert anti-estrogenic effects.

However, establishing a relationship between cancer risk and diet – especially specific foods – is much more difficult than establishing such links in the case of other chronic diseases such as coronary heart disease. This is because there are few well-established non-invasive indicators of cancer risk, and studies are very rarely conducted for long enough to measure actual differences in tumor incidence. Consequently, it is difficult to claim with confidence whether a particular intervention increases or decreases the chances of developing cancer.

Epidemiologic research is a useful mode of investigation for exploring a relationship between diet and cancer. Epidemiology is the study of the patterns, causes, and control of disease in groups of people. There are two primary types of epidemiologic studies, case-control and prospective studies. In case-control studies, scientists compare people with cancer to those without in hopes of identifying characteristics such as lifestyle or diet that are more common to one group than the other. In prospective studies, scientists first evaluate the characteristics of a large group of healthy people, then follow those subjects for many years in hopes of identifying whether certain factors are more common to those who develop cancer than to those who don’t. Generally, prospective studies are considered more credible than case-control studies. It is important to recognize, however, that epidemiologic studies cannot establish cause and effect relationships. Only clinical trials can do that. But epidemiologic studies are often used as a basis for clinical research.

To evaluate the relationship between soy intake and breast cancer risk, Bruce Trock and colleagues from the Johns Hopkins School of Medicine and Georgetown University conducted a meta-analysis of epidemiologic studies. A meta-analysis is the statistical analysis of a large collection of results from individual studies for the purpose of integrating the findings. This particular analysis included 12 case-control studies and 6 prospective studies. The major finding of this analysis was that when all women (Asian and non-Asian, pre- and postmenopausal) were considered, soy intake was associated with a 14% reduction in breast cancer risk. That is, women consuming higher quantities of soy were 14% less likely to develop breast cancer than women who consumed relatively little soy. However, subgroup analysis revealed that soy was more protective against pre- compared to postmenopausal breast cancer, and was protective in studies involving non-Asian women but not Asian women.

The analysis by Trock and colleagues provides modest support for the notion that soy may protect against breast cancer. A 14% reduction is certainly noteworthy, but for several reasons the study results should be interpreted with caution.

First, in many studies, soy intake was not actually quantified. Rather, it was estimated based on the urinary excretion of isoflavones. Because urinary isoflavone excretion varies so much from person to person, it provides only a rough approximation of soy intake. Furthermore, although soy was found to be protective in studies involving non-Asian women, the intake of soy by the women in these studies was quite low. There is some doubt as to whether such low intakes are sufficient to exert biological effects. Since soy foods are still consumed by only a minority of people in non-Asian countries – and are often favored by especially health-conscious individuals – we must consider the possibility that the perceived cancer-protective effects of soy may result from an overall healthy lifestyle, rather than soy consumption per se. Although the researchers employed statistical techniques to try to separate the effects of soy from other factors common to people who eat soy, this is very difficult to do.

While some evidence, including the new analysis by Trock and colleagues, suggests soy foods may reduce breast cancer risk, no conclusions can be made at this time. Nevertheless, because soy foods provide excellent nutrition, they can play an important role in an overall healthy diet, regardless of their possible relationship to breast cancer protection.

SOY & PROSTATE CANCER

The soy bean isoflavone genistein inhibits the growth of both androgen-dependent39-42 and androgen-independent39, 42-45 prostate cancerous cells, depending on the level of soy doses administered. In addition, genistein inhibits the invasive capacity of prostate cancerous cells 42and enhances the ability of radiation to kill these cells.46 However, the concentration of genistein required to exert these effects is higher than the serum isoflavone levels of people who eat soy foods.47-49 Nevertheless, several observations suggest these effects are biologically relevant.39,44-49

Regional Diets Can Impact Prostate Cancer

In Japan, although many men have prostate cancer, few die of this dis-ease. This is because the small tumors often referred to as latent prostate cancer, not uncommon to Japanese men, rarely progress to the more advanced form of this disease.51, 52 Isoflavones in combination with tea extracts were shown to reduce tumor growth in mice more effectively than either agent alone.9

In Asia, and especially in Japan, where prostate cancer mortality rates are low, both soy foods and tea are important components of their diet. There are likely several factors that contribute to this clinical situation in Japanese men and according to the International Prostate Health Council, and isoflavone intake from soy foods may be one.53

There has been limited epidemiologic investigation of the relationship between soy intake and prostate cancer. These studies have produced mixed results but can be said to be consistent with the hypothesis that soy intake reduces prostate cancer risk.

A recent analysis of 10 epidemiologic studies found that soy intake was associated with a one-third reduction in prostate cancer risk.5 However, many of the epidemiologic studies involved a small number of cases54, 55 and/or did not comprehensively evaluate soy food intake. However, a recent comprehensive Japanese case-control study found that when comparing the highest with the lowest soy food intake cases, risk was reduced by nearly 50 percent.56

Soy May Help Treat Existing Prostate Cancer

Data suggests that soy foods may be useful in the treatment of existing prostate cancer, but this remains speculative. A study of 11 trials, three involving healthy subjects57-59 and eight involving prostate cancer patients,60-67 examined the effects of isoflavones on PSA levels. No benefits were noted in healthy subjects, but among the cancer patients one-half noted favorable effects.68Recent intervention data demonstrate that reducing prostate cancer risk is not dependent upon reductions in PSA levels.69

References

  1. American Cancer Society. Cancer Facts and Figures; 2005.
  2. Messina MJ, Persky V, Setchell KD, Barnes S. Soy intake and cancer risk: a review of thein vitro and in vivo data. Nutr Cancer 1994;21:113-131.
  3. Messina M, Barnes S. The role of soy products in reducing risk of cancer. J Natl Cancer Inst 1991;83:541-546.
  4. Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Invest 2003;21:744-757.
  5. The health claim petition: soy protein and the reduced risk of certain cancers. 2004.(Accessed at http://www.fda.gov/ohrms/dockets/dockets/04q0151/04q0151.htm.)
  6. Yan L, Spitznagel E. A meta-analysis of soy foods and risk of breast cancer in women. Int J Cancer Prevention 2005;1:281-293.
  7. Messina MJ, Loprinzi CL. Soy for breast cancer survivors: a critical review of the literature.J Nutr 2001;131:3095S-3108S.
  8. Magee PJ, Rowland IR. Phyto-oestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 2004;91:513-531.
  9. Zhou JR, Yu L, Mai Z, Blackburn GL. Combined inhibition of estrogen-dependent human breast carcinoma by soy and tea bioactive components in mice. Int J Cancer 2004;108:8-14.
  10. Cohen LA, Zhao Z, Pittman B, Scimeca JA. Effect of intact and isoflavone-depleted soy protein on NMU-induced rat mammary tumorigenesis. Carcinogenesis 2000;21:929-935.
  11. Day JK, Besch-Williford C, McMann TR, Hufford MG, Lubahn DB, MacDonald RS. Dietary genistein increased DMBA-induced mammary adenocarcinoma in wild-type, but not ER alpha KO, mice. Nutr Cancer 2001;39:226-232.
  12. Thomsen AR, Mortensen A, Breinholt VM, Lindecrona RH, Penalvo JL, Sorensen IK. Influence of Prevastein(R), an Isoflavone-Rich Soy Product, on Mammary Gland Development and Tumorigenesis in Tg.NK (MMTV/c-neu) Mice. Nutr Cancer 2005;52:176-188.
  13. Kim H, Hall P, Smith M, Kirk M, Prasain JK, Barnes S, Grubbs C. Chemoprevention by grape seed extract and genistein in carcinogen-induced mammary cancer in rats is diet dependent. J Nutr 2004;134:3445S-3452S.
  14. Atkinson C, Warren RM, Sala E, Dowsett M, Dunning AM, Healey CS, Runswick S, Day NE, Bingham SA. Red-clover-derived isoflavones and mammographic breast density: a double-blind, randomized, placebo-controlled trial. Breast Cancer Res 2004;6:R170-179.
  15. Maskarinec G, Takata Y, Franke AA, Williams AE, Murphy SP. A 2-year soy intervention in premenopausal women does not change mammographic densities. J Nutr2004;134:3089-3094.
  16. Kurzer MS. Hormonal effects of soy in premenopausal women and men. J Nutr2002;132:570S-573S.
  17. Maskarinec G, Franke AA, Williams AE, Hebshi S, Oshiro C, Murphy S, Stanczyk FZ. Effects of a 2-year randomized soy intervention on sex hormone levels in premenopausal women. Cancer Epidemiol Biomarkers Prev 2004;13:1736-1744.
  18. Palomares MR, Hopper L, Goldstein L, Lehman CD, Storer BE, Gralow JR. Effect of soy isoflavones on breast proliferation in postmenopausal breast cancer survivors. Breast Cancer Res Treatment 2004;88 (Suppl 1):4002.
  19. Brown BD, Thomas W, Hutchins A, Martini MC, Slavin JL. Types of dietary fat and soy minimally affect hormones and biomarkers associated with breast cancer risk in premenopausal women. Nutr Cancer 2002;43:22-30.
  20. Shu XO, Jin F, Dai Q, Wen W, Potter JD, Kushi LH, Ruan Z, Gao YT, Zheng W. Soy food Intake during Adolescence and Subsequent Risk of Breast Cancer among Chinese Women.Cancer Epidemiol Biomarkers Prev 2001;10:483-488.
  21. Wu AH, Wan P, Hankin J, Tseng CC, Yu MC, Pike MC. Adolescent and adult soy intake and risk of breast cancer in Asian-Americans. Carcinogenesis 2002;23:1491-1496.
  22. Korde L, Fears T, Wu A, West D, Pike M, Hoover R, Ziegler R. Adolescent and childhood soy intake and breast cancer risk in Asian-American women. Breast Cancer Res Treat2005;88 (suppl 1):S149.
  23. Lamartiniere CA, Zhao YX, Fritz WA. Genistein: mammary cancer chemoprevention, in vivo mechanisms of action, potential for toxicity and bioavailability in rats. J Women’s Cancer 2000;2:11-19.
  24. Hilakivi-Clarke L, Onojafe I, Raygada M, Cho E, Skaar T, Russo I, Clarke R. Prepubertal exposure to zearalenone or genistein reduces mammary tumorigenesis. Br J Cancer1999;80:1682-1688.
  25. Russo J, Lareef H, Tahin Q, Russo IH. Pathways of carcinogenesis and prevention in the human breast. Eur J Cancer 2002;38 Suppl 6:S31-32.
  26. Hamilton AS, Mack TM. Puberty and genetic susceptibility to breast cancer in a case-control study in twins. N Engl J Med 2003;348:2313-2322.
  27. Elias SG, Peeters PH, Grobbee DE, van Noord PA. Breast cancer risk after caloric restriction during the 1944-1945 Dutch famine. J Natl Cancer Inst 2004;96:539-546.
  28. Michels KB, Ekbom A. Caloric restriction and incidence of breast cancer. JAMA2004;291:1226-1230.
  29. Lee SY, Kim MT, Kim SW, Song MS, Yoon SJ. Effect of lifetime lactation on breast cancer risk: a Korean women’s cohort study. Int J Cancer 2003;105:390-393.
  30. Leon DA, Carpenter LM, Broeders MJ, Gunnarskog J, Murphy MF. Breast cancer in Swedish women before age 50: evidence of a dual effect of completed pregnancy. Cancer Causes Control 1995;6:283-291.
  31. Zheng T, Duan L, Liu Y, Zhang B, Wang Y, Chen Y, Zhang Y, Owens PH. Lactation reduces breast cancer risk in Shandong Province, China. Am J Epidemiol 2000;152:1129-1135.
  32. Zheng T, Holford TR, Mayne ST, Owens PH, Zhang Y, Zhang B, Boyle P, Zahm SH. Lactation and breast cancer risk: a case-control study in Connecticut. Br J Cancer2001;84:1472-1476.
  33. Vatten L. Can prenatal factors influence future breast cancer risk? Lancet 1996;348:1531.
  34. Michels KB, Trichopoulos D, Robins JM, Rosner BA, Manson JE, Hunter DJ, Colditz GA, Hankinson SE, Speizer FE, Willett WC. Birthweight as a risk factor for breast cancer.Lancet 1996;348:1542-1546.
  35. Freudenheim JL, Marshall JR, Vena JE, Moysich KB, Muti P, Laughlin R, Nemoto T, Graham S. Lactation history and breast cancer risk. Am J Epidemiol 1997;146:932-938.
  36. Hemminki K, Li X. Cancer risks in second-generation immigrants to Sweden. Int J Cancer 2002;99:229-237.
  37. Shimizu H, Ross RK, Bernstein L, Yatani R, Henderson BE, Mack TM. Cancers of the prostate and breast among Japanese and white immigrants in Los Angeles County. Br J Cancer 1991;63:963-966.
  38. Hemminki K, Li X, Czene K. Cancer risks in first-generation immigrants to Sweden. Int J Cancer 2002;99:218-228.
  39. Peterson G, Barnes S. Genistein and biochanin A inhibit the growth of human prostate cancer cells but not epidermal growth factor receptor tyrosine autophosphorylation.Prostate 1993;22:335-345.
  40. Onozawa M, Fukuda K, Ohtani M, Akaza H, Sugimura T, Wakabayashi K. Effects of soy bean isoflavones on cell growth and apoptosis of the human prostatic cancer cell line LNCaP. Jpn J Clin Oncol 1998;28:360-363.
  41. Shen JC, Klein RD, Wei Q, Guan Y, Contois JH, Wang TT, Chang S, Hursting SD. Low-dose genistein induces cyclin-dependent kinase inhibitors and G(1) cell-cycle arrest in human prostate cancer cells. Mol Carcinog 2000;29:92-102.
  42. Santibanez JF, Navarro A, Martinez J. Genistein inhibits proliferation and in vitro invasive potential of human prostatic cancer cell lines. Anticancer Res 1997;17:1199-1204.
  43. Naik HR, Lehr JE, Pienta KJ. An in vitro and in vivo study of antitumor effects of genistein on hormone refractory prostate cancer. Anticancer Res 1994;14:2617-2619.
  44. Kyle E, Neckers L, Takimoto C, Curt G, Bergan R. Genistein-induced apoptosis of prostate cancer cells is preceded by a specific decrease in focal adhesion kinase activity. Mol Pharmacol 1997;51:193-200.
  45. Bhatia N, Agarwal R. Detrimental effect of cancer preventive phytochemicals silymarin, genistein and epigallocatechin 3-gallate on epigenetic events in human prostate carcinoma DU145 cells. Prostate 2001;46:98-107.
  46. Hillman GG, Forman JD, Kucuk O, Yudelev M, Maughan RL, Rubio J, Layer A, Tekyi-Mensah S, Abrams J, Sarkar FH. Genistein potentiates the radiation effect on prostate carcinoma cells. Clin Cancer Res 2001;7:382-390.
  47. Doerge DR, Chang HC, Churchwell MI, Holder CL. Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry. Drug Metab Dispos 2000;28:298-307.
  48. Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR. Mass spectrometric determination of Genistein tissue distribution in diet-exposed Sprague-Dawley rats. J Nutr2000;130:1963-1970.
  49. Dalu A, Haskell JF, Coward L, Lamartiniere CA. Genistein, a component of soy, inhibits the expression of the EGF and ErbB2/Neu receptors in the rat dorsolateral prostate. Prostate1998;37:36-43.
  50. Messina M. Emerging evidence on the role of soy in reducing prostate cancer risk. Nutr Rev 2003;61:117-131.
  51. Yatani R, Kusano I, Shiraishi T, Hayashi T, Stemmermann GN. Latent prostatic carcinoma: pathological and epidemiological aspects. Jpn J Clin Oncol 1989;19:319-326.
  52. Shibata A, Whittemore AS, Imai K, Kolonel LN, Wu AH, John EM, Stamey TA, Paffenbarger RS. Serum levels of prostate-specific antigen among Japanese-American and native Japanese men. J Natl Cancer Inst 1997;89:1716-1720.
  53. Griffiths K. Estrogens and prostatic disease. International Prostate Health Council Study Group. Prostate 2000;45:87-100.
  54. Jacobsen BK, Knutsen SF, Fraser GE. Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States) [see comments]. Cancer Causes Control 1998;9:553-557.
  55. Severson RK, Nomura AM, Grove JS, Stemmermann GN. A prospective study of demographics, diet, and prostate cancer among men of Japanese ancestry in Hawaii.Cancer Res 1989;49:1857-1860.
  56. Lee MM, Gomez SL, Chang JS, Wey M, Wang RT, Hsing AW. Soy and isoflavone consumption in relation to prostate cancer risk in China. Cancer Epidemiol Biomarkers Prev2003;12:665-668.
  57. Urban D, Irwin W, Kirk M, Markiewicz MA, Myers R, Smith M, Weiss H, Grizzle WE, Barnes S. The Effect of Isolated Soy Protein on Plasma Biomarkers in Elderly Men with Elevated Serum Prostate Specific Antigen. J Urol 2001;165:294-300.
  58. Adams KF, Chen C, Newton KM, Potter JD, Lampe JW. Soy isoflavones do not modulate prostate-specific antigen concentrations in older men in a randomized controlled trial.Cancer Epidemiol Biomarkers Prev 2004;13:644-648.
  59. Jenkins DJ, Kendall CW, D’Costa MA, Jackson CJ, Vidgen E, Singer W, Silverman JA, Koumbridis G, Honey J, Rao AV, Fleshner N, Klotz L. Soy consumption and phytoestrogens: effect on serum prostate specific antigen when blood lipids and oxidized low-density lipoprotein are reduced in hyperlipidemic men. J Urol 2003;169:507-511.
  60. Hussain M, Banerjee M, Sarkar FH, Djuric Z, Pollak MN, Doerge D, Fontana J, Chinni S, Davis J, Forman J, Wood DP, Kucuk O. Soy isoflavones in the treatment of prostate cancer. Nutr Cancer 2003;47:111-117.
  61. Fischer L, Mahoney C, Jeffcoat AR, Koch MA, Thomas BE, Valentine JL, Stinchcombe T, Boan J, Crowell JA, Zeisel SH. Clinical characteristics and pharmacokinetics of purified soy isoflavones: multiple-dose administration to men with prostate neoplasia. Nutr Cancer2004;48:160-170.
  62. deVere White RW, Hackman RM, Soares SE, Beckett LA, Li Y, Sun B. Effects of a genistein-rich extract on PSA levels in men with a history of prostate cancer. Urology2004;63:259-263.
  63. Spentzos D, Mantzoros C, Regan MM, Morrissey ME, Duggan S, Flickner-Garvey S, McCormick H, DeWolf W, Balk S, Bubley GJ. Minimal effect of a low-fat/high soy diet for asymptomatic, hormonally naive prostate cancer patients. Clin Cancer Res 2003;9:3282-3287.
  64. Jarred RA, Keikha M, Dowling C, McPherson SJ, Clare AM, Husband AJ, Pedersen JS, Frydenberg M, Risbridger GP. Induction of Apoptosis in Low to Moderate-Grade Human Prostate Carcinoma by Red Clover-derived Dietary Isoflavones. Cancer Epidemiol Biomarkers Prev 2002;11:1689-1696.
  65. Kumar NB, Cantor A, Allen K, Riccardi D, Besterman-Dahan K, Seigne J, Helal M, Salup R, Pow-Sang J. The specific role of isoflavones in reducing prostate cancer risk. Prostate2004;59:141-147.
  66. Dalais FS, Meliala A, Wattanapenpaiboon N, Frydenberg M, Suter DA, Thomson WK, Wahlqvist ML. Effects of a diet rich in phytoestrogens on prostate-specific antigen and sex hormones in men diagnosed with prostate cancer. Urology 2004;64:510-515.
  67. Kranse R, Dagnelie PC, van Kemenade MC, de Jong FH, Blom JH, Tijburg LB, Weststrate JA, Schroder FH. Dietary intervention in prostate cancer patients: PSA response in a randomized double-blind placebo-controlled study. Int J Cancer 2005;113:835-840.
  68. Messina M, Kucuk O, Lampe J. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate specific antigen levels. JAOAC; (accepted).
  69. Meyer F, Galan P, Douville P, Bairati I, Kegle P, Bertrais S, Estaquio C, Hercberg S. Antioxidant vitamin and mineral supplementation and prostate cancer prevention in the SU.VI.MAX trial. Int J Cancer 2005;116:182-186.

What Causes the Elevation of Cholesterol Levels In the Blood?

After all, what causes the elevation of cholesterol levels in blood?

The following are some suggestions from the medical literature about factors, beyond the famous but wronged and simplistic idea that foods based on saturated fats cause the development of atherosclerosis (1, 22), suggesting that stress, high carbohydrate diets (sugar acid) and smoke may raise total cholesterol and low density lipoproteins levels:

1. Stress increases metabolic acids
a) Anxiety and cholesterol elevation (2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
b) Hostility and cholesterol elevation (12, 13, 14)
c) Extreme physical exertion and cholesterol elevation (15)

2) High carbohydrate diets or the acid sugar and cholesterol elevation (16, 17, 18).

Continue reading What Causes the Elevation of Cholesterol Levels In the Blood?

Your Guide To Alkaline Foods That Slim

chart listing acidic and alkaline foods

 A quick and easy reference guide to the alkaline foods that slim and energize—and the acidic foods that trigger weight gain. As a growing body of research shows, eating a diet rich in alkaline foods can ease internal inflammation, improve digestion and flush stubborn fat. But just what makes a food acidic or alkaline?
According to Robert O. Young, Ph.D., coauthor of The pH Miracle, this pH measurement isn’t based on the makeup of the food itself, but rather the chemical by-products the food produces during digestion and absorption. For example, lemons contain organic acids that give them a tart taste, but when this citrus fruit is consumed, it forms alkaline compounds that work to neutralize toxic acids in the body.
To make following an alkaline plan easy, FIRST asked health experts to categorize the most common alkaline and acidic foods. Simply fill your plate with 80 percent alkaline-forming foods (like the fruits and veggies listed on the right half of the chart) and limit intake of acid-forming foods (like the meat, dairy products and carbs listed on the left) to 20 percent of your diet.

Testing Your Water for pH and Antioxidant Potential!

Watertesting

Is Your Water Alkaline and Antioxidant Rich?

You will notice 3 glasses of water with added pH reagent showing different colors. The glass of water on the left turned orange when the reagent was added indicating an acidic pH. The glass of water in the middle showed a very light green when reagent was added indicating a neutral water or a water with a pH of 7. The last glass of water on the right had 5 drops of puripHy added with the reagent indicating a high pH water of 9.5 to 10 and a high level of antioxidants.

You can also do another experiment to test antioxidant potential by taking one inch of tap water, adding 10 drops of iodine and 10 drops of puripHy and then watching what happens. If the water being tested has sufficient antioxidants or electrons it will neutralize the iodine and the water will remain clear and clean rather than changing a darker color of orange to red.

Soda Drinks – Including Soda Water – May Kill You!

Researchers from Cleveland Clinic’s Wellness Institute and Harvard University have found that greater consumption of sugar-sweetened and low-calorie sodas is associated with a higher risk of stroke.

The study – recently published in the American Journal of Clinical Nutrition – is the first to examine soda’s effect on stroke risk. Previous research has linked sugar-sweetened beverage consumption with weight gain, diabetes, high blood pressure, high cholesterol, gout and coronary artery disease.
“Soda remains the largest source of added sugar in the diet,” said Adam Bernstein, M.D., Sc.D., study author and Research Director at Cleveland Clinic’s Wellness Institute. “What we’re beginning to understand is that regular intake of these beverages sets off a chain reaction in the body that can potentially lead to many diseases – including stroke.”
The research analyzed soda consumption among 43,371 men who participated in the Health Professionals Follow-Up Study between 1986 and 2008, and 84,085 women who participated in the Nurses’ Health Study between 1980 and 2008. During that time, 2,938 strokes were documented in women while 1,416 strokes were documented in men.
“The answer to the increase in strokes from drinking soda is quite simple – sugar is a metabolic acid and is poisonous to the body in all of its forms,” states Dr. Robert O. Young. Dr. Young further states, “other acids including carbonic and phosphoric acid also contribute to inflammation, atherosclerosis, acidic plaque, thrombosis, obesity, glucose intolerance, insulin resistance, diabetes high blood pressure, heart disease and stroke.” In sugar-sweetened sodas, the sugar load may lead to rapid increases in blood glucose and insulin which, over time, may lead to glucose intolerance, insulin resistance, and inflammation. These physiologic changes influence atherosclerosis, plaque stability and thrombosis – all of which are risk factors of ischemic stroke. This risk for stroke appears higher in women than in men.
The pH of soda drinks are highly acidic with a pH of less than 3 and an oxidative reduction potential of over +450mV. According to Dr. Young, “soda sucks the life right out of you!”
In addition, study findings show that men and women who consumed more than one serving of sugar-sweetened soda per day had higher rates of high blood pressure and high blood cholesterol and lower physical activity rates. Those who drank soda more frequently were also more likely to eat red meat and whole-fat dairy products. Men and women who consumed low-calorie soda had a higher incidence of chronic disease and a higher body mass index (BMI). The investigators controlled for these other factors in their analysis to determine the independent association of soda consumption on stroke risk.
“According to research from the USDA, sugar-sweetened beverage consumption has increased dramatically in the United States over the past three decades, and it’s affecting our health,” said Dr. Bernstein. “These findings reiterate the importance of encouraging individuals to substitute alternate beverages for soda.”
Dr. Young suggests, “drinking soda drinks compromises the alkaline design of the body setting the stage for sickness, dis-ease, disease and death. People are digging their graves with their own teeth when they ingest foods and beverages that are highly acidic/toxic to the blood and tissues. These acidic foods and beverages include, animal flesh, dairy products, alcohol. coffee, tea, soda drinks, sports drinks, high sugar fruit drinks, vinegar, and sugar in all of its forms both natural and artificial.”

Introducing pH Miracle All-Natural Ionic Mineral Alkaline Bottled Drinking Water

pH Miracle All-Natural Ionic Mineral Alkaline Bottled Drinking Water

https://www.facebook.com/video.php?v=390060804484722

• pH Miracle is bottled by a proprietary and FDA-approved water technology.
• pH Miracle consists of ion See More

Introducing pH Miracle All-Natural Ionic Mineral Alkaline Bottled Drinking Water
* * *
• pH Miracle is bottled by a proprietary and FDA-approved water technology.
• pH Miracle consists of ionic calcium, ionic magnesium, ionic potassium, and trace amounts of ionic natrium.
• pH Miracle has one of the highest and most stable pH’s of any bottled water in the world, with a stable pH ranging from 9 to 10.
• pH Miracle will reduce and reverse the acidity in our body by flushing out the acidic waste, therefore, behaving as an anti-oxidant, which helps protect our body from free radical damage. The formation of free radicals (i.e. cancer cells, etc.) is created by a poor diet, environmental pollution, and bodily stress.
• pH Miracle helps balance our body’s pH, therefore, reducing symptoms, such as, weight problems, allergies, arthritis, diabetes, osteoporosis, etc.
• pH Miracle is micro-clustered water, which means that the molecular structure of the water is formed in such a way as to rapidly penetrate on the cellular level. pH Miracle is more effectively absorbed on the cellular level than any other leading drinking water currently on the market.
• pH Miracle tastes better. A blind-taste test was performed, comparing the taste of the pH Miracle all-natural ionic mineral alkaline drinking water with eight (8) other leading brands. Almost two-thirds of the taste-testers from this blind-taste test chose our water as the best-tasting water.
• pH Miracle more readily absorbs into the body’s blood stream than any other drinking water, therefore, increasing circulation and hydration, which helps increase overall energy levels of the body.
• pH Miracle water helps to neutralize the lactic acid build up in the muscles when performing strenuous work or exercise, therefore, reducing and eliminating aches and pains in the joints and muscles. Aches and pains are caused from a lack of circulation and hydration. Because pH Miracle is so hydrating, it increases circulation, therefore, helping to relieve the body’s aches and pains.
* * *
There are two different kinds of alkaline drinking waters offered on the market today, as follows:
The first kind of alkaline water is ionized water, which is electrically-charged water.
Ionized water uses electrolysis (or an electric current) to break apart the molecules in the water in order to increase the pH. However, ionized water has hard (inactive) minerals in the water, which our body has a difficult time absorbing. Also, once the electric current is removed, the water eventually loses its electrical charge and reverts to its neutral state, therefore, rapidly diminishing the pH. Once the pH is diminished, ionized water is no different than tap water.
* * *
The second kind of alkaline water is pH Miracle, which is ionic mineral water.
pH Miracle ionic mineral alkaline drinking water doesn’t use an electric current, but it only uses positively-charged minerals (i.e. minerals in their ionic form) to raise the pH. There are no hard (inactive) minerals in the pH Miracle water;
• therefore, compared to ionized alkaline waters currently on the market,
• pH Miracle has unique advantages that far exceed all other brands.
* * *
For more information please email HolisticCode@yahoo.com

 — with Robert O Young.

The pH Miracle Water

I stopped in to one of our stores, Oceana Market in Pacifica, California, the other day and saw this cool front end cap display right across from the registers of Dr. Robert O. Young’s alkaline pH Miracle Water. It’s the pallet we placed and it’s selling very well! So well that I restocked a bunch of the pH Miracle Water from the back while I was there and several cases had already been emptied. Ask your local store to carry the best alkalized and energized water in the World with a clean, pure, stable pH of 9.5 and a ORP of -250mV! To learn more go to: https://www.phmiracleliving.com/p-643-ph-miracle-bottled-alkaline-water.aspx