Category Archives: Robert O. Young

The Power of Love

Love = energy = mc2

Love = energy = mc2

Can positive or negative thoughts and emotions affect your body’s delicate biochemistry or the acid/alkaline pH balance?

Love, fear, joy, anger, sadness, happiness, resentment. Can positive or negative emotions affect your body’s physical, mental and spiritual health?

Is a woman more likely to become pregnant if she eats a lot of vegetables or if she were to go on a long, relaxing vacation?

Are you more likely to do cancer if you have a hot temper?

Do people who laugh a lot live longer?

Does your anxiety or fear of crowds, elevators, blood, heights, spiders, hospitals, or airplanes somehow affect your health?

My theory of one sickness, one disease and one health, set forth in what I call “The New Biology,” not only considers how our diet affects our physiology, but also how our psychology affects our physiology and how our psychology affects our spirituality.

Not only does the health of your body affect the emotions of your mind, but your thoughts and feelings can affect the health of your entire body.

Bottom line, your mental state is ever so critical. In so many ways, your mental state, if it’s negative, can create more metabolic acids than the acidic food that you’re eating

In fact, you can create two or three times more metabolic acids from your thoughts or your mental and emotional state than from ingesting highly acidic dairy, animal protein, sugar and alcohol.

So your thoughts are critical. Your thoughts or words do become matter, and can affect your physiology in a negative or positive way. Your thoughts do become biology. And the way that thoughts become biology is as follows:

When you have a thought or say a word, it requires electrical or electron energy for the brain cell(s) to produce those actions. And as you carry on with that thought, you are burning or consuming energy. And when you are consuming electrical energy in your thoughts, you are producing a biological waste product called acid which is an energetic waste product which can be measured in pH, oxidative reduction potential, rH2 or redox, hertz and decibels.

Next, if the metabolic acids from your thoughts are not properly eliminated through the four channels of elimination which are urination, perspiration, respiration or defecation (form women menstruation), then the acids from your thoughts are moved out into your connective and fatty tissues ­because it must not be allowed to affect the pH of the blood and the interstitial fluids of the interstitium or the fluids that surround the cells. The delicate pH balance of the blood and the interstitium must remain quite constant 7.365 to remain healthy.

What happens next is this. As the excess and overload of acid are thrown out into the body tissues or intestitium, this can easily lead to all sorts of symptomologies: lupus, fibromyalgia, Lyme’s, arthritis, muscle pain, fatigue, tiredness, obesity, cancerous breasts, cancerous prostate, cancerous stomach and/or bowels, indigestion, acid reflux, heart burn, heart attacks, multiple sclerosis, Parkinson’s, dementia, autism, and the list goes on and on.

 

For example let’s say you’ve been doing sadness or depression. This downer feeling is coming from a negative experience that you keep looping and re-looping in your head. It’s like a mind movie. It’s a mini-drama that you keep playing over and over. And because you are constantly thinking about it, eventually you even start to be concerned or worried about the fact that you are so preoccupied with the whole affair. So now in addition to the sad drama, you are experiencing upset about the fact that you’re having the drama itself. All of this thinking requires electrical energy and when you’re consuming electrical energy in the form of electrons you are also producing metabolic acids.

Do you know any angry people? You may not know it, but many people who become angry easily not only get angry at various people, events, and situations, but eventually they are irritated with themselves for being so angry at everything else. Anger, for instance, requires a tremendous amount of energy and emits a great deal of electrical energy. You have undoubtedly felt the vibrational energy of someone who is angry. Or maybe you have felt your own anger and how it can upset your physiology, i.e., especially upset your stomach and bowels with excess acid leading to indigestion, stomach pain, acid reflux or ulcers.

Even worse, many of these negative emotions are chronic and can be traced all the way back to early childhood experiences. So, at one level or another, it’s been going on for a long time­ and creating excessive acid all along.

For many people, early childhood represents some of the most fearful and vulnerable years. Have you ever wondered why you can’t remember much before age five or six? Many of those years are filled with fears and tears, mads and sads ­and how about the “bads”? Do you remember what happened when you were “bad?” Imagine the acid from those experiences. In addition to the punitive experience itself, imagine the acidity a child deals with by simply a) remembering such a “bad” experience or b) anticipating the possibility of another such “bad” experience…or c) both! Some “children” remember these events forever!

Some chronic emotions begin early:

 

“O dear white children casual as birds, Playing among the ruined languages,

So small beside their large confusing words,

So gay against the greater silences, Of dreadful things you did…”

It is during these vulnerable and unprotected years that we often plant eternal seeds of emotion that will yield an unwelcome harvest of acidic internal results, perhaps throughout one’s entire life.

The turmoil between parents and children, not to mention the conflicts between children and children, have been documented by many thousands of social science books and articles.

“Children begin by loving their parents; after a time they judge them;

Rarely, if ever, do they forgive them.”

So, let’s take a look at all of that emotion. Perhaps you are feeling a strong emotion. It could be any emotion.

Emotions Are Energy in Motion

 

First of all, emotions are energy in motion. When you are (e)motional, you are energetic, either in a positive or negative way. And if you are energetic, you are literally energy in (e)motion. You are now producing metabolic acids at a very high rate which is a waste product of such (e)motions.

The rate of acid production in an (e)motional state can be even greater than that of someone who is jogging or working out. So, your thoughts do become biological or metabolic acids that can make you sick, tired, depressed, angry and even too fat or underweight.

When you start producing acids with your thoughts, words and actions, what happens inside? First, you activate the alkaline-buffering systems of the body in order to neutralize these (e)motional acids. The body begins making a primary alkaline buffer known as sodium bicarbonate. It’s actually made from the blood in corporation with the cover cells of the stomach and during its production, it creates a waste product known as hydrochloric acid.

Hydrochloric acid is a poisonous acidic toxin and cannot remain in the blood. So it is dropped down into the gastric pits of the stomach. This is why people get upset stomachs or become constipated when they are (e)motional. This increase of sodium bicarbonate is critical in maintaining the alkaline design of the body, the pH of 7.365 for the blood, and for maintaining alkalinity of the interstitial fluids. If these acids, including hydrochloric acid, are not buffered and/or eliminated through the four channels of elimination, they can create serious health challenges in your body, mind, and spirit.

On the other hand, positive (e)motions, such as love, peace, hope, faith, joy, forgiveness and charity can be alkalizing to the blood and tissues. These (e)motions require far less energy and can cause you to be relaxed in your mind and stop the playing of some acidic toxic movie in your head. Students of higher consciousness know that you can even enter into a state of bliss wherein you have no thoughts and wherein you are producing no metabolic acid.

I Want Young Love

 

For myself, I have decided to call this wonderful place “Young Love.” That’s because I exercise and meditate every day. And I Love it! And it raises my level of consciousness and positive connection with the world. The connections between “Young” and “Love” are numerous. My name is Young, of course, but more importantly, being young is a term we normally associate with being youthful, energetic, open, optimistic, and filled with excitement. And the ultimate purpose of life is Love. And Love is the sweetest expression of life. So Young and Love go together.

To be sure, I Love my exercising and it Loves me back in terms of its gifts to me. I find myself Loving this state of bliss daily which I know is helping to alkalize my body. That is why I am addicted to­ why I Love­ this type of alkalizing exercise that I do every day. It’s called a “Positive Addiction”. I Love to have my friends and guests work out with me as I lead them through the steps. I teach them the Young version of Yoga. I tell them that it is known as “Younga Yoga”. They Love that. (Well, at least they laugh.) It incorporates proper breathing, stretching, toning, mediation, relaxation, and of course some sweating to remove yesterday’s dietary and metabolic acid and to help bring me into a state of happiness and bliss.

Through my personal and clinical research, I have found that maintaining the alkaline design of my body with an alkaline lifestyle and diet is the most important thing anyone can do to live a happier and more blissful life. Having an alkaline day is a way of life that I call “Young Living”. I guarantee you that what I call “Young Love” will go hand-in-hand with the goal of “Young Living”.

Are YOU Angry?

 

Now this next thought is very important! The negative (e)motions of anger, resentment, and fear­ being the most powerful and acidifying of all (e)motions­ are all highly acidic to the blood and tissues and in many ways are paralyzing to all bodily functions. Over time, the fear of the unknown is probably the most powerful and acidic of them all. Fear is so devastating to the body that even if you’re on an alkaline diet, overcoming a serious health challenge is practically impossible.

In such a dire case, with what may seem to be little or no improvement, you might be wondering if the pH Miracle Lifestyle and Diet may not be working. You may be asking, “What else am I not doing that I should be? How come I feel the way that I’m feeling? I’m eating the right way, I’m drinking the right alkaline electron rich water, but I can’t seem to achieve the type of extraordinary health and energy that I’m seeking.”

In most cases like this, when you are eating and drinking correctly, it will come down to your negative acidic (e)motions or thoughts that are holding you back from achieving extraordinary health, fitness, mental clarity, happiness, and bliss. However, keep this in mind:

When you’re eating an alkaline diet and you are doing everything you know how to do, and yet you are overwhelmed with worry, doubt and negative (e)motions, thank God you’re eating an alkaline diet! If your body were not seriously in the alkaline direction, you might very well be experiencing a struggle for your life. Your acidic (e)motions can literally kill you. So the alkaline diet is the saving grace. Knowing that should give you the positive hope that you can hang on, get through the emotional stress, and still come out physically and mentally able.

Hope and positive expectations are always the key, and knowing that you are on an alkaline diet should aid significantly in boosting your hope and confidence. You can live without food for forty days. You can live without water for about four days. You can live without air for maybe four minutes. But you cannot live without hope and love at all. Hope, love, positive expectations, confidence in what you are doing, and trust in your own good intentions ­this is the key, and that’s what the pH Miracle Lifestyle and Diet will do for you. It will give you hope!

The Leading Cause of Death in the World?

 

The leading cause of death in the world today is said to be heart attacks. But people are really having “thought attacks,” NOT “heart attacks.” There are studies showing that over 80% of all heart attacks are (e)motionally triggered. I have said that people don’t die of a heart attack. They die of a thought attack that medical science simply refers to as a heart attack because that’s the end result.

And if you have wondered if you can die from a broken heart, the answer is absolutely! And the cause? Acids from energy in motion or (e)motion. The loss of a cherished love one can increase your metabolic acids from the (e)motion to the point that it can stop your heart from beating and pumping life-giving blood throughout your blood vessels. And we all know or should know that life and death is in the blood, the most important “organ” of the body.

So let’s take a moment to talk about what I do when I have a client who’s in a highly negative acid-forming (e)motional situation and all the body fluids, including the blood, will show a decline in the pH even when this person has been eating an alkaline diet.

In order to buffer the acid forming (e)motions, the client will have to hyper-alkalize the blood and then the tissues in order to bring the body back into alkaline balance. When the client is hyper-alkalizing, the pH of the urine will increase into the high 8’s and even into the 9’s. Hyper-alkalization is necessary in order to overcompensate for the negative acidic producing (e)motions and to bring the body back to health, energy, vitality, hope, peace, harmony and love.

So, does a person have a fair chance of healing themselves from a degenerative disease or dis-ease like heart disease or cancer? Can you ever achieve a state of blissful happiness? Can you recover from the devastating shock of a loss or from having been diagnosed with a scary-sounding health challenge? I say “absolutely, YES!” And I just told you how.

Given the importance of (e)motions in cancer or acidic causation, etc., I have been particularly interested in the unique biochemistry of the “reptilian brain” which includes the Amygdala, a part of the brain associated with the senses and emotions and their storage or memory. Acid or sugar specifically activates the areas of the Amygdala. I have often wished that our traditional medical industry would spend some of their billions of research dollars checking out and verifying for the world what I have demonstrated for years that the pH Miracle electron-rich alkaline Lifestyle and Diet would be much more calming to the lower (e)motions of grief, shame, guilt, anger, fear, etc­., responses of the reptilian brain­ as compared to a toxic acidic chemical drug.

A chemical acidic drug may temporarily calm a person down, but it will also inhibit the entire spectrum of normal and healthy functioning of the Amygdala. I am assuming here that most of us still value and are interested in the healthy functions of socialization, sexual attraction, and the enjoyment of the myriad of feelings associated with home and hearth. All of these wonderful human experiences and memories are also functions of the Amygdala every bit as much as the feisty adrenal functions responding to “fight and flight.”

In our attempts to find a chemical drug to treat almost everything, we (more often than not) create more problems than we eliminate­ one step forward and two steps backward. I know that attention deficit problems (ADHD) respond to an alkaline regimen….and hyperactivity is an Amygdala function. So it follows that an alkaline lifestyle and diet would produce less overall adrenal and most important Amygdala “stress” as well (really just the fight or flight mechanism by another name).

The pH Miracle electron-rich alkaline lifestyle and diet is calming to the mind and thus calms the negative (e)motions or energy in motion. This appropriate calming of the Amygdala function produces less “stress.” And, with less “stress” you have less “acid.” And, with less “acid” you have less sickness, dis-ease, so-called disease, depression and unhappiness. Understand NOW?

Can our (e)motions cause cancer?

 

I have said that cancer is a four letter word­ ACID. When you are doing negative acidic (e)motions, such as anger, revenge, hate, sadness or depression, you are creating metabolic acids that can cause ANY and ALL cancerous conditions across all body tissues. If metabolic acids are not removed via urination, perspiration, defecation or respiration (menstruation -why women live longer), then they are delivered to body tissues. When constant excess acid from negative (e)motions are poured into the body tissues, the body tissues will degenerate causing a cancerous condition. Pharmaceutical companies are creating drugs addressing symptoms that may give you the illusion of feeling better, but they DO NOT deal with the causative metabolic acids from eating, drinking and negative acidic (e)motions. This can only lead to more physical and (e)motional pain and unnecessary suffering.

Young Life, Young Energy and Young Love

 

When you are in a negative (e)motional state, it can become impossible for you to heal your serious degenerative or acidic challenge. But, I will say this: if you are willing to commit to change and begin the alkalizing process, even if you are not completely out of your state of fear, anger, depression or anger, you will begin to put more “Young Life,” “Young Energy,” and “Young Love” into your mind, body and spirit.

I have found over the years that when you start feeling better, you start thinking better. And when you start thinking better, you start doing better. So, you don’t have to have your (e)motions completely under control in order to start losing weight, feeling better, reversing a serious illness, having more sustainable energy and to start being happy and more spiritually connected.

When you start the pH Miracle Lifestyle and Diet program, you are then making a conscious decision to try to do a little better. And, when you get on this healing path that leads to Young Living, Young Energy, and Young Love­ this gradual alkalizing process­ you start having those little and then those big pH miracles. You start feeling better and you start thinking better. And, when you start feeling and thinking better, you realize at some point that you have forgotten your depression and your sadness. Feelings of anger have disappeared ­and even what you were upset about. You soon forget what you were fearful about in the first place.

Why? These changes come about because you feel so good. You are rewriting your genetic expressions with your positive (e)motions. You are taking your alkalizing eraser and erasing all your past life’s negative emotions. On the pH Miracle Lifestyle and Diet your (e)motions or energy in motion will finally be under your control. You will become the master of your mind, body and spirit. You will be living an alkaline lifestyle and diet full of energy, happiness, bliss and love. You will be living and breathing “Young Love.”

To learn more about the affect of negative and positive (e)motions on the brain and body and to learn more about “Young Living” “Young Energy” and “Young Love” read, The pH Miracle, The pH Miracle revised and update, The pH Miracle for Diabetes, The pH Miracle for Weight Loss and The pH Miracle for Cancer – http://www.phoreveryoung.com

How Healthy is Your Blood?

“Scare Forms” “Yeast” & “Parasites” in Live Unstained Blood!

The live blood cell micrograph above is showing a “scare forms” with yeast (Y-form) and a Trypanosoma brucei parasite and always an indication of metabolic acidosis or decompensated acidosis of the interstitial fluids of the Interstitium and blood. (pH below 7.365) These “scare forms” with parasites and yeast are always associated with a serious health challenge and an acidic lifestyle and diet!

Read – Nutritional Cellular Microscopy: Live and Dried Blood Profiles by Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner – To order go to: https://www.amazon.com/gp/product/B01JVK48XE/ref=dbs_a_def_rwt_hsch_vapi_taft_p1_i10

The blood micrograph also shows just under the “Scare Form” a Trypanosoma brucei parasite as seen in live human blood through the eyes of pHase contrast microscopy.

If you are eating raw or uncooked meat (beef, chicken, pork) or fish (especially raw) you are at a 99 percent risk for “scare form”, “yeast” and “parasites”.

Blood parasites are at epidemic levels today in the USA and not just in 3rd World countries. To learn more read Sick and Tired, Reclaim Your Inner Terrain by Robert O Young PhD. To order go to: https://www.amazon.com/Sick-Tired-Reclaim-Inner-Terrain/dp/1580540562/ref=la_B001ILKCSU_1_5?s=books&ie=UTF8&qid=1519008562&sr=1-5&refinements=p_82%3AB001ILKCSU

SuperGreens – The World’s First Organic Vegetable, Fruit and Grass Powder!

InnerLight SuperGreens – by Dr Robert O. Young – The Original Super Greens Powder – 49 Grasses, Leaves, Vegetables, Sprouts & Herbs – Organic & Wild Crafted Ingredients – Great Tasting – No Cameron Fillers

Screen Shot 2018-07-13 at 4.40.04 AM

About the product

ORIGINALLY CREATED IN 1988 by Dr. Robert Young (author of the best-selling pH Miracle books), this product was one of the 1st greens powders on the market and has stood the test of time, helping thousands of people maintain their health.
ALL THE GREENS YOUR BODY NEEDS – InnerLight SuperGreens is a super-concentrated organic combination of 49 different grasses, leaves, vegetables, sprouts, and herbs
Screen Shot 2018-07-13 at 4.41.07 AM
DOES NOT CONTAIN any fillers, artificial sweeteners, colorings, flavorings, additives, preservatives, spirulina, algae, mushrooms or probiotics.
MICRO FINE POWDER that makes it easy to mix with water and consume.
CHILDREN LOVE THE TASTE of the InnerLight SuperGreens powder which gets them started on the road to Optimal Health.

Product description

Screen Shot 2018-07-13 at 4.40.47 AM

 InnerLight SuperGreens is a super-concentrated organic combination of 49 different grasses, leaves, vegetables, sprouts & herbs; all the “greens” your body needs. Originally created in 1988 by Dr. Robert Young (author of the best-selling pH Miracle books), this product was one of the 1st greens powders on the market and has stood the test of time, helping thousands of people maintain their health.
Tony Robbins, internationally known motivational speaker, talked about InnerLight SuperGreens in a 1 1/2 hour “Power Talk” interview he did with Dr Robert Young in the early 2000’s. This helped get the word out about our excellent product.
Tony-robbins
InnerLight SuperGreens powder is a micro fine powder which makes it easy to mix with water and digest. The greens powder smells great and has a mild taste.
InnerLight SuperGreens DOES NOT CONTAIN any fillers, artificial sweeteners, colorings, flavorings, additives, preservatives, spirulina, algae, mushrooms or probiotics. Our product is also formulated with Non GMO ingredients.
SuperGreens powder has four times the power of ordinary green powders. Drinking InnerLight SuperGreens is the quickest way to get a high concentration of chlorophyll which can assist with building healthy cells.
As Dr Young says, “When the Fish is Sick, Change the Water”. SuperGreens is an organic, colloidal, concentrated, charged high frequency food. There is nothing else like it. We invite you to commit to a 120-day program and take your health to the next level.
0-8
If you’re worried that you’re not getting enough greens in, InnerLight SuperGreens is the answer for you.
Try some InnerLight SuperGreens today!
p.s.- We have a “no-quibble guarantee” so you have nothing to lose!
Screen Shot 2018-07-13 at 4.39.47 AM

Lectures From Around The World

Galina MIgalko MSc, MD, NMD and Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner
Galina MIgalko MSc, MD, NMD and Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner 

Come listen and learn from Key Note Speakers, Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner and Galina Migalko MSc, MD, NMD, in four different countries around the World as they lecture on non-invasive medical diagnostics, the interstitium, pH, nutrition and their break-through research on prevention and non-invasive treatments for cancer, diabetes, heart disease, arthritis, osteoporosis, lupus, multiple sclerosis, infections, and many more acidic-caused diseases.

To pre-register for one or more World Conferences please email phmiraclelife@gmail.com and receive an additional 10 to 20 percent discount on the listed early-bird pricing. You can also register by phone by calling 760 484 1075.

When you enroll in one of our Conferences you will receive a credit for a live and dried blood cell analysis, valued at 1200 euros.

Please check out the Countries, Cities, Dates and Pricing below!

SHOCKING STUDY IN 2016: Chemo Kills up to 51% of Patients within 30 days

cause of death

For decades now, many scientists have been raising red flags that chemotherapy can oftentimes do more harm than good, and in a surprisingly large number of cases, it simply does not work.

Dr. Hardin B. Jones, a former Professor of Medical Physics and Physiology at Berkeley, California, studied the impact of chemotherapy, radiation, and surgery on the survival rates of cancer patients, and found that instead of prolonging lives, these treatments actually make the patients die almost four times sooner. This was found more than 40 years ago, and yet not much has changed in the way the hospitals treat cancer.

For terminal patients as well, a 2016 study in the peer-reviewed journal of the American Cancer Society CANCER found that living at home instead of being treated at the hospital prolonged their lives by about 45%.

And now, a new study was just published earlier this month that analyzed 30-day mortality rates caused by the treatment itself: chemotherapy and chemotherapy plus radiation.

Cancer Study: Early Mortality Rate Caused by Chemotherapy

The study, published in The Lancet’s Oncology, looked at 23,228 breast and 9,634 lung cancer patients in England.

download-58

The results showed high death rates linked to the treatment, increased use of SACTs (systematic anticancer therapies – cytotoxic chemotherapy). The researchers stated it was due “poor clinical decision making.”

“Patients dying within 30 days after beginning treatment with SACT are unlikely to have gained the survival or palliative benefits of the treatment, and in view of the side-effects sometimes caused by SACT, are more likely to have suffered harm,” states the study.

The researchers write that while there a few patients who may have benefited from SACTs, there were too many who were harmed by it, or even killed by the treatment.

chemotherapy-448578_960_720

In 2014 , the year the study was researched, almost 1,400 patients in England died within 30 days of their first chemotherapy treatment. In some hospitals, the mortality rate was significantly higher than in the others: up to 51% of breast cancer patients died in Milton Keynes (although the number of total patients was small), and up to 29% of lung cancer patients died in Lancashire Teaching Hospitals.

“Simply reducing doses of or avoiding SACT altogether would reduce or eliminate instances of treatment-related early mortality.”

The study was done after noticing a clear lack of data analyzing the risk versus gain of using chemotherapy and mortality rates caused by it in the first 30 days of treatment. As the researchers state, this is the first time this topic has been brought up and investigated at a national level.

The “million dollar questions” (or perhaps “billion dollar” since this is the cancer treatment industry we’re talking about) raised by the researchers included: is chemotherapy use still advocated based on small clinical studies — most sponsored by the pharmaceutical industry?

And it has never been fully studied how well it works in a real hospital setting?

Do Most Hospitals Know What They Are Even Doing?

The study points out two problems. One is that mortality rate is high due to poor clinical decisions. Perhaps because in most hospitals chemotherapy is given in a one-size-fits all manner or a fixed-dose with no consideration to a patient’s health history, and characteristics such as weight and age.

In England’s database, it was found that for many patients, the doctors did not include why the chemotherapy was given, and the overall health of the patient and the severity of their cancers was never recorded.

Both of these factors, as the study points out, could significantly change the outcome for these patients.

In America, another study found that doctors gave palliative chemotherapy to terminal cancer patients, and in at least two-third of cases, the patient did not know that the treatment could not cure them, but it only alleviated some symptoms, such as pain.

Knowing that the treatment could not help them in the end, would they have searched for alternative options that may have worked better?

Death Rates from Chemotherapy Are Rarely Properly Documented

The second issue the study found is that mortality rates are hard to analyze because they are not well or properly recorded.

In England’s case, many dates of deaths were simply missing from the national database. Some were documented twice, and the two dates did not match.

 

800px-Death_certificate_of_John_Otto_Siegel,_front_view

In America, the national statistic of cancer mortality comes from the death certificates. This is what the National Center for Health Statistics (NCHS) along with the doctors use to see how many people are die from cancer, and how many people die from the treatment. Unfortunately, the National Cancer Institute reports “cancer” as the cause of death for almost all cancer patients, regardless of what actually caused it, as pointed out in a 2002 article.

This article raised concern that “cancer death rates are systematically underestimated, in that many patients who die as a result of cancer treatment do not have cancer recorded as the underlying cause of death.”

For example, they studied patients who died within one month after a cancer-surgery between 1994 and 1998, and 41% of these deaths were not properly recorded. The authors write that cancer treatment was the likely cause of death.

“…Many deaths subsequent to 1 month after cancer-directed surgery may be similarly miscoded.”

Unfortunately, even though the study points out that many death certificates quote some condition other than cancer as the cause of death (such as liver failure), they want the cause of death to be just “cancer.” That would lead to further incorrect data as many patients do die from cancer treatments, and liver failure that would not happen from cancer, is often caused by the toxic chemo drugs. But what this study does show us, is that because of a 1999 revision in the International Statistical Classification of Diseases and Related Health Problems (ICD), instead of a cancer or cancer-related death, death certificates now have to show the “underlying” cause of each death, such as: thromboembolism (blood vessel obstruction), infections, organ failures, and hemorrhage (excessive bleeding).This leads to improper classification and underestimated cancer death rates and statistics.

How many patients die from the treatment instead of cancer?

That is hard to say until every doctor and hospital begins classifying the causes of deaths correctly. Until then, it is important to keep studies like this in mind when considering pros and cons of starting a chemotherapy treatment.

There are more and more alternative options out there – and for many, they do work. (Just look up testimonials from the Nutritional Oncology Research Institute, or even studies on carotenoids antioxidants derived from natural sources, and even IV curcumin and sodium bicarbonate).

“I think it’s important to make patients aware that there are potentially life threatening downsides to chemotherapy. And doctors should be more careful about who they treat with chemotherapy,” writes one of the study’s co-authors, Professor David Dodwell, Institute of Oncology, St James Hospital, Leeds, UK.

This article is for informational purposes only. Consult a doctor before beginning any treatment. See our full disclaimer here. 

Want to learn more about the most effective ways to prevent and reverse cancer?  Read The pH Miracle revised and updated and The pH Miracle for Cancer –

https://www.amazon.com/Robert%20O.%20Young/e/B001ILKCSU/ref=la_B001ILKCSU_pg_1?rh=n%3A283155%2Cp_82%3AB001ILKCSU&sort=author-pages-popularity-rank&ie=UTF8&qid=1528305583

Screen Shot 2018-06-07 at 8.31.48 AM.png

References

1) https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(16)30383-7/abstract?code=lancet-site

2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360753/

3) https://althealthworks.com/8088/berkeley-scientist-cancer-patients-live-4x-longer-by-refusing-chemotherapyyelena/

4) https://academic.oup.com/jnci/article/94/14/1044/2519814

5) Alkalizing Nutritional Therapy in the Prevention and Treatment of Any Cancerous Condition – https://www.amazon.com/Alkalizing-Nutritional-Prevention-Treatment-Cancerous-ebook/dp/B01JKCXJRY/ref=la_B001ILKCSU_1_14?s=books&ie=UTF8&qid=1528429047&sr=1-14&refinements=p_82%3AB001ILKCSU

6) The pH Miracle for Cancer: Discover the Truth about the Cause, Prevention, Treatments, and Reversal of ALL Types of Cancers – https://www.amazon.com/PH-Miracle-Cancer-Prevention-Treatments-ebook/dp/B01JJX1Q8S/ref=la_B001ILKCSU_1_6?s=books&ie=UTF8&qid=1528428158&sr=1-6&refinements=p_82%3AB001ILKCSU

7) Using Sodium and Potassium Bicarbonates in the Prevention and Treatment of All Sickness and Disease – https://www.amazon.com/Potassium-Bicarbonates-Prevention-Treatment-Sickness-ebook/dp/B01JLHJ1Y8/ref=la_B001ILKCSU_1_30?s=books&ie=UTF8&qid=1528429161&sr=1-30&refinements=p_82%3AB001ILKCSU

Pathological Blood Coagulation and the Mycotoxic Oxidative Stress Test

 Robert Young PhD

Naturopathic Practitioner – The pH Miracle Ti Sana Detox Medical Spa and Universal Medical Imaging Group

Abstract

Historical analysis suggests that conventional understandings of Disseminated Intravascular Coagulation (DIC) may be misguided; further examination may be necessary.  Here, a theoretical analysis provides an alternative explanation for DIC pathology; it is suggested that the cause and mechanics of DIC are largely due to the proliferation of several intravascular microforms and their associated metabolic toxic acidic waste products — Mycrozymian Acidic Toxins (MAT) and Exotoxic-Mycotoxic-Producing Microorganisms (EMPO).  The Mycotoxic Oxidative Stress Test (MOST) is presented here as an easy, inexpensive and non-invasive alternative to conventional measurements for the detection of intravascular  acidic toxins, DIC  and oxidative stress.

Introduction and Historical Perspective

More than 150 years ago, British physician T. W. Jones asked the question, “Why does the blood circulating in the vessels not coagulate?”[1]  though a general answer to this question is now obvious, the biochemical mechanisms involved in how the blood coagulates (clots) are complex and varied, and all the intricacies have not yet been explained. A. Trousseau, recognized that the blood of cancer patients is in a hyper-coagulable state in the process of coagulation, even while confined in the blood vessels.[2]  The name given to this discovery is still in use today, as “Trousseau’s Syndrome.”[2]  Early in his career, Rudolph Virchow, the Father of Pathology, was interested in thrombosis and embolism.  He speculated that intravascular blood could be altered so it would clot as a result of a stimulus too weak to clot normal blood.[3]  In 1856 Virchow delivered a lecture setting forth this concept.

Although the concept of partial clotting within vessels reaches back to the beginnings of modern medicine, much of the discovery of its biochemical mechanisms – the activation of clotting factors – has been left to chance.  The admission of a patient to the hospital with an unceplained bleeding disorder challenged researchers to discover the cause of hemorrhaging.  Analysis of blood from normal persons helped in the study of the patient with the blood disorder. A new clotting factor was hereby discovered which was missing from the  patient’s blood.  For this reason, several clotting factors have been named after the individuals in which they were missing: e.g., Christmas factor (factor IX)[4], Hageman factor (factor XII)[4].

In this article, the causes of pathological (intravascular) clotting will be described, as will various methods of detecting this condition, especially a blood test I call the Mycotoxin Oxidative Stress Test (MOST).

The Mechanics of Blood Coagulation

Blood clotting is a highly detailed chemical-mechanism involving many distinct components.  The problem for the hematologist hs been to understand it at the biochemical level.  Undoubtedly, efforts to fully understand blood clotting will continue for many more years.

Recalling Antione Bechamp’s[8] and Gunther Enderlein’s[9] research into the sub cellular living elements and combining this with what is known of colloidal flocculation[6], it is suggested that the clotting of blood begins with the end-linking (polymerizing) of the fundamental protein unit called by Bechamp the microzyma[8].  A chain of these living units constitutes fibrinogen, which is still dispersed 9micro-hetergenous0 in the blood, and it may or may not be further processed.  If processing continues, it will be either by continued end-linking or by cross-linking.  End-linked fibrinogen is referred to here as fibrin monomer, which I have suggested is a repair protein also dispersed in the blood. Due to a number of blood clotting factors, the process may continue until the excess fibrin monomer and/or until fibrin becomes excessively end-linked.

Cross-linking the polymerized strands to form a three-dimensional network results in what is called the hard clot (fibrin – the major protein of clotting blood).  Factor XIII, which instigates the forming of these blood networks. is always present but latent in the blood, and must be activated before the formation can occur.  Persons who are producing fibrin monomer or excessively linked fibrinogen are said to be in a hyper-coagulable state, while those having diminished  ability to form clots are in a hypo-coagulated state.  It is the activation of the colloidal clotting factors which is so complex.  Blood clotting may occur through many pathways and be initiated by many different stimuli.  Regardless of initiation factors, the process is a sequence of events in which the activation of one factor triggers another, until, after a series of discrete steps, fibrin is formed.

When blood is clotted prematurely, and the factors involved are consumed (incorporated into) the body recognizes a deficiency of clotting agents and generates more.  Thus, people with a tendency to clot excessively will alternate between a hyper coagulable state and a hypo-coagulatable state.  When in the hypo coagulated state, such people hemorrhage until the deficient clotting factors are replaced.[4]  When only fibrin monomer or excessively linked fibrinogen is formed (no cross-linking), it is quite subtle and may go undetected.  It may be detected by a change in blood viscosity (sedimentation rate), by the Mycotoxic Oxidative Stress Test (described later), or by other more subtle means.  If strands of fibrinogen are cross-linked, however, a suggicient amount of insoluble precipitate of fires may result, and these can be detected microscopically using a phase contrast and dark-field microscopy in prepared slides of fresh tissue or blood.  An excessive formation of fibrin leads to  an impairment in circulation, and eventual organ failure usually results.[5]

With this background, we are in a position to consider a standard medical term: disseminated intravascular coagultion (DIC).[6]  This term encompasses the hyper coagulable state, i refer to as pathological blood coagulation which consists of both insoluble and excess dispersed polymers of colloidal proteins.

Key Ingredients of Pathological Blood Coagulation

Before discussing DIC in more detail, it si necessary to introduce its fur important ingredients according to this view – mycotoxins, endotoxins, exotoxins, and tissue factor.  Any of these elements, or any combination of them, can play a major role in initiating unwanted DIC.[6]  However, mycotoxins or the acids from yeast have been found to be the underlying element which instigates and intensifies the participation of the other three.[6]  Each will now be described in turn and brought into the clotting picture.

(Micrograph 1: left, shows normal hyper-coagulated blood in a healthy blood clot sample and right, hypo coagulated blood in an unhealthy blood clot sample)

Mycotoxins and Metabolism by Fermentation

As discussed in the main text of my published book, Sick and Tired book[7 ]. acidification of blood and body tissues and organs and the accompanying lack of oxygen lead to pathological metabolic fermentation, which is carried out primarily by yeast and mold.  Such pathological microorganisms, or their precursors, ar inherent to the human body and to all higher organisms.  Their precursors according to Bechamp, the microzymas, carry on a nominal and homeostatic fermentation themselves. under healthy conditions.[8]  The primary function of yeast and mold is to decompose the body upon the death of the animal or human organism.  Their premature overgrowth indicates a biochemical environment akin to death.  During pathological metabolic fermentation, high concentrations of several acidic substances called mycotoxins are created.  They are highly damaging, always acidic, metabolic products.  If not immediately buffered by specific antioxidants, such as hydrogen peroxide and the hydroxyl free-radical, mycotoxins can seriously disrupt the physiology by disrupting normal metabolism and by penetrating blood and body cells and poisoning them.  As will be seen, they interact with many of the mechanisms for DIC in various pathological symptomologies.

In my published article called The Finger on the Magic of Life: Antoine Bechamp, 19th Century Genius (1816-1908),  I discuss pleomorphism in some detail.[7] Understanding this phenomenon – the rapid evolution of microorganisms across traditional taxonomic  lines is helpful in getting a complete picture of DIC.  Briefly stated, collodial living microzymas evolve intracellularly into more complex forms (microorganisms), beginning with a healthy primitive stage comprising of repair proteins.  As the disease condition worsens, morbid intermediate forms (filterable bacteria or viruses, cell-wall deficient forms and full bacteria) develop from repair proteins, or directly from microzymas.  A third macrostage comprises the commonly recognized culminate microorganisms which are yeast, fungus to mold.  In terms of pleomorphism, all of these microorganisms represent a single family of variously functioning forms.[8]  The culminate forms produce the lions share of acids, which are mycotoxins and the primary focus of my research.[7][8][9]  For convenience, bacteria, yeast, fungus and mold that produce acidic metabolic wastes and protein cellular fragments called exotoins, endotoxins and mycotoxins will here be referred to collectively ash EMPO, or exotoxic, mycotoxic-producing microorganisms.

What follows is a shortened description or the description and origin of several exotoxins and mycotoxins, referred to collectively microzymian acidic toxins of MAT, which are involved in the processes leading to DIC.  The bio-effects, or the pathology of cellular fermentation, of these toxic metabolites are know as mycotic illness, mycotoxicosis, or mycotoxic stress as seen in the MOST and described and published by Dr. Bolin in the 1940’s.[10]

One such metabolic product is acetyl aldehyde, which is formed by  cellular breakdown of food, especially carbohydrate and the birth of  EMPO.  Acetyl aldehyde can also break down into a secondary substance know as ethyl alcohol.  Although acetyl aldehyde presents an immediate hazard to health and well-being, nature has provided a means of buffering of neutralizing this acidic by-product of cellular digestion and fermentation almost as soon as it is created.[11] The controls of acetyl aldehyde (and ethyl alcohol) are the sulfur amino acids, cysteine, taurine, methionine and the peptide glutathione which is found in red blood cells and almost all cells utilizing oxygen.[12]  In an attempt to buffer or neutralize MAT, the body will also bind or chelate both fats and minerals to them.[12]

Another member of the MAT family is uric acid, which is formed by the digestion of protein and the creation of EMPO.[13]  Uric acid can also break down into secondary substance, on of which is alloxan.[14] This has been shown to damage the insulin-producing pancreatic beta cells leading to diabetes [Refer to Tables 1 and 2]

A shortage of alkalizing nutrients or an excess of MAT initi­ates an immune response in which a special class of free radicals which I call microzymian oxidative buffering species (MOBS) are released.[15] These oxygen metabolites carry unpaired electrons and are intended to disrupt bacteria, yeast, fungus and mold, and buffer exotoxins, endotoxins, and mycotoxins. Current medical savants believe that they can disrupt just about any­thing they contact, including healthy cells and tissue: this is not accurate. The fact is that MOBS carriers a nega­tive surface-charge and repel healthy cells, which also have a negative surface-charge. [16] It is the positively surface-charged bacteria, yeast/fungus, mold, exotoxins, endotoxins, and myco­toxins that MOBS bind too.[17]  This aspect gives some insight into autoimmune phenomena, which are not, as is often maintained, the result of an overburdened immune system. They result either as a side-effect of the immune system’s attempt to remove foreign or toxic ele­ments, or as a direct attempt by the immune system to remove cells or tissue rendered useless or disturb­ing to the body by MAT.

In every degenerative symptomatology I have studied, I have found excessive MAT and MOBS (see Tables 1-3). Some of these degenerative symptoms and their underlying disease conditions, including cancer are described in my recently published paper on a deficiency on alkaline nutrition and cancer. [15] But the fact that myco­toxins cause harm to humans and other animals is purely a secondary effect, since, as noted, the prima­ry function of the microorganism is not to cause illness. We know from the fossil record that pleomorphic microforms existed long before animals.[19] In fact, humans and animals developed in terms of micro­organisms.[20] The reverse, however, is not true. Since micro­organisms appeared first in the developmental sequence, they are not physiologically aware of humans and animals. There is much evidence that human and animal physiologies are highly aware of, and respond to MAT – these acidic compounds signaling the presence of bacteria, yeast, fungi and/or mold or  EMPO.[21].

Endotoxins

Also involved in the process leading to DIC are endotoxins, substances endogenous to symptogenic (i.e., “pathogenic” in orthodox terms) bacteria. Endotoxins are a family of related substances having certain common characteristics, but differing from one bacterial form (or strain) to another. Endotoxins are lipopolysaccharides (LPS). LPS form a widely diversified group because of (1) the number of long- chain fatty acids composing lipids; (2) the number of individual sugars as well as their modes of linkage to one another; (3) the branching of sugar chains; and (4) the number of possible arrangements of these units. Endotoxins also contain proteins, further com­pounding the structural diversity.[22]

One theory on endotoxin states that its purpose is to act as a semi-permeable membrane for the bac­terium, limiting and regulating substances entering the organism.[22] Endotoxin resides solely on or near the interior surface of the cell membrane and is shed into the surrounding medium only upon the death of the bacterium. Thus, as these microforms die off, or are lysed by bodily activity, endotoxin is released. (This fact may well be an explanation for the Herxheimer reaction, in which a patient becomes worse following the administration of toxic drugs or other forms of treatment that drastically alter the associated organ­ism.[23]) Another endotoxin theory states that LPS are a constituent of the membrane, and as the organism grows, endotoxin fragments are repeatedly sloughed off into the medium. This phenomenon has been observed in the digestive tract.[24] Since bacterial translocation into the blood is not only possible but common where epithelial hyperpermeability exists, one can assume that the process will continue there. Both theories may be correct if we think of the first one as true of “adult” forms, and the second as true of newly developed and expanding ones.

Basic to the structure of an endotoxin is the lipid common to all forms, designated lipid A, to which is attached a “core” polysaccharide, identical for large groups of bacteria. To the core polysaccharide is attached the O-antigen, consisting of various lengths of polysaccharide chains which are chemically unique for each type of organism and LPS. These chains pro­vide endotoxin specificity.[25] Experiments conducted over many years indicate that most, if not all, of the toxic effects of an endotoxin may be attributed to the lipid portion, and it is sometimes used per se in experiments rather than the entire molecule.[26] An important additional feature of lipid A is its phos­phate content. Each phosphate group carries a nega­tive charge, and since lipid A is a rather large mole­cule, it provides, essentially, a negatively charged sur­face. The importance of this will be seen shortly.

Exotoxins

These are the metabolic excretions of bacteria. While endotoxin’s ongoing effect is, in a manner of speaking, in the background, exotoxins, like myco­toxins, present a double-edged sword. Not only do they initiate DIC, but they produce, or influence the body to produce, the various and numerous infec­tious symptomatologies, such as typhoid fever, diph­theria, etc. (See “Vaccination Reconsidered” in Section 4 of the Appendix of Sick and Tired for details on the action of diphtheria toxin.)[7] By comparison, mycotoxins not only initiate DIC, but there is much evidence to sug­gest that they produce, or influence the body to pro­duce, degenerative symptomatologies, such as arthri­tis, diabetes, etc., and cancer and AIDS as well.

Tissue Factor

Crucial to the understanding of DIC is recogni­tion of the role of tissue factor (TF), formerly known as thromboplastin. This transmembrane lipoprotein exists on the surface of platelets, vas­cular endothelial cells, leukocytes, monocytes, and most cells producing EMPO.[27] It plays a major role in several biochemical mechanisms leading to DIC.

TF is the primary cell-bound initiator of the blood coagulation cascade. Its gene is activated in wound healing and other conditions. By itself it is capable of initiating clotting, but also becomes active when complexed with factor VII or activated factor VII (Vila).[28] TF has been described as the receptor for factor VII because of the close association between the two proteins and because it causes a shape change (conformational) in factor VII, allowing it to attain activity. Both factor Vila and the TF/VII com­plex activate factors IX and X, which initiate the clotting cascade and the formation of thrombin.[29]

Development of Disseminated
Intravascular Coagulation
(DIC)

DIC Induced by MAT and Tissue Factor

An infusion of toxins into the blood has a direct effect on TF gene expression in leukocytes. Contact of MAT, endotoxins (lipid A), or exotoxins with leukocytes, activates proteins that bind to DNA nucleotide sequences, thereby activating the TF gene.[30] (See Tables 4-6.)

Endothelial cells damaged in culture by exotoxins, endotoxins, or mycotoxins attract polymorphonuclear leukocytes (PMNs), which adhere to the damaged cells. Once the leukocytes are bound, they can still have their TF gene activated if it hasn’t yet occurred, and they may release MOBS in response to toxins and to organisms of disease, possibly creating further dis­turbances. (Cellular disorganization then releases acti­vating proteins into the blood, which is discussed in more detail later.) Research shows that exotoxic and mycotoxic stress resulting in bound PMNs can be blocked by “antioxidants.”[31] These might better be called anti-exotoxins or antimycotoxins. Both observa­tion and study have led the author to conclude that cellular disorganization is initiated and primarily caused by fermentation pathology, not, as is the cur­rent belief, by the MOBS, or free radicals, generated to destroy toxins and microorganisms. MOBS or free radicals, because of their negative charge, are released to chelate or bind EMPO and MAT. It is suggested by current savants that free radical tissue damage is the secondary, “shotgun” effect of intense immune response to EMPO toxification and MAT-damaged cells. This could not be the case since healthy cells or their membranes carry a negative charge and would resist any electromagnetic attraction because of simi­lar charge. The concentration and instability of MAT generated in a compromised terrain, as opposed to the fleeting existence of free radicals, especially exoge­nous ones, also lead to this conclusion.

Endothelial cells grown in culture can be induced to express tissue factor. In one experiment, no procoagulant activity could be detected in the absence of toxins. However, the addition of mycotoxins from Aspergillus niger or Micrococcus neoformas (Mucor racemosus Fresen) resulted in procoagulant activity which reached a maximum in four to six hours and was dose-dependent. The same experiment was applied using E. coli and Salmonella enteritidis endo­toxin with a similar result.[32] A single intravenous injection of a mycotoxin from Aspergillus niger into experimental animals resulted in circulating endothelial cells within five minutes. In other exper­iments with the mycotoxin, detachment of endothe­lial cells from the basement membrane was noted.[33] (See Table 8.)

Removal of endothelial cells has dire conse­quences from two standpoints: First, the surface of these cells is covered with a specific prostaglandin (PGI2) known as prostacyclin. If blood contacts a surface not covered with PGI2, it will clot. For example, surfaces devoid of this prostaglandin are formed whenever a vessel is cut or punctured. An abrasion or other injury may also expose a surface on which PGI2 is lacking. The removal of endothelial cells by exotoxins or mycotoxins creates a surface devoid of PGI2, leading to blood clotting (see Table 7). Secondly, disorganization of endothelial cells cre­ates increased levels of EMPO and MAT which are attracted to an exposed surface (basement mem­brane) which expresses a negative charge. This also leads to clotting.

DIC Induced by Electrostatic Attraction

It was discovered in 1964 that blood will clot sim­ply from contacting a negatively charged surface.[34] Previously it was believed that the clotting process comprised a cascade of enzyme activity in which one activated the next, etc. The discovery that blood could be clotted simply by contacting a negatively charged surface ruled out the purely enzyme hypoth­esis. Only some of the known clotting factors have been shown to be enzymes.[35] As a result of this sur­prising discovery, detailed research was conducted in an attempt to describe the process. In some experi­ments, the negatively charged surfaces of selected, finely divided, inorganic crystals, including alu­minum oxide, barium sulfate, jeweler’s rouge, quartz, and titanium oxide, were considered.[36]

The clotting factor eventually shown to be activat­ed when whole blood contacted negatively charged surfaces was factor XII, also known as the Hageman factor. This is a positively charged protein migrating in an electric field (electrophoresis) toward the anode.[37] It is believed that factor XII is normally in the shape of a hairpin which binds to the negatively charged sur­face at the bend. Electrostatic attraction forces the two arms to lie flat on the surface, thereby exposing the inner faces and activating the molecule.

It was discovered that if the negatively charged particles were smaller than the clotting factor itself, activation was minimal. Or, if the concentration of clotting factor was too great, there was little or no activation.[38] Both of these observations indicated that the process was one of electrostatic attraction between the negatively charged surface and the clot­ting factor, which is a “basic” protein, that is, posi­tively charged.[39]

Activation of factor XII allows the activation of factor XI, which then activates factor IX. Thus, the blood clotting cascade continues to the formation of fibrin in the normal manner.[40] However, due to a series of activations begun by contact of factor XII with a negatively charged surface, trace amounts of factor Xa also show up in the blood. Factor VII is activated to Vila by factor Xa. Factor Vila then acti­vates factors IX and X, leading to the formation of thrombin. Factor Xa, with co-factor Va, continues the clotting cascade until fibrinogen is activated, leading to fibrin formation.[41] (See Table 5.)

As discussed earlier in terms of prostacyclin, beneath endothelial cells is another surface—the basement membrane. Called the extracellular matrix, it is a thin, continuous net of specialized tis­sue between endothelial cells and the underlying connective tissue. It has four or more main con­stituents, including proteoglycans (protein/polysac- charide).[42] The removal of endothelial cells by’MAT exposes this membrane, which is negatively charged by virtue of its sulfonated polysaccharides in the pro­teoglycans. This brings a reduced negatively charged surface into direct contact with the blood, which activates factor XII and the clotting cascade.[43]The positively charged toxic components of MAT also activate factor XII, as do disturbed disorganized cells, yeast/fungus cells, moldy cells, and the phos­phate groups in the lipid A component of endotoxin. (See Tables 2-5.)

To summarize this section, exotoxic, mycotoxic, and oxidative stress resulting from the overgrowth of bacteria, yeast/fungus, and then mold, has multiple actions, all leading to disseminated intravascular coagulation:

MAT activation of tissue factor gene in leukocytes; subsequent activation of factors VII, IX, and X, resulting in the blood clotting cascade.

MAT activation of tissue factor gene in endothelial cells, again leading to the clotting cascade.

MAT damage to endothelial cells, resulting in neu­trophil attraction, with TF gene activation and generation of MOBS, which, in turn, neutralize MAT, protecting healthy endothelial cells or the basement membrane and supporting the janitorial services of the leukocytes.

Removal of negatively charged endothelial cells by positively charged exotoxins, endotoxins, and mycotoxins, creating a surface devoid of PGI2, also exposes the negatively charged basement membrane, leading to the activation of factor XII and initiation of the clotting cascade. Positively charged components of EMPO, exotoxins and mycotoxins, and several other elements, including the lipid A component of bacterial endotoxin, also activate factor XII and the clotting cascade.

Endothelial Cells as Antithrombotics or Procoagulants

Normal, resting (unstimulated) endothelial cells show antithrombotic activity in several ways: (1) by the inhibition of prostacyclin (platelet adhesion and aggregation); (2) the inhibition of thrombin genera­tion; and (3) the activation of the fibrinolytic system, leading to clot lysis.[45] We will take a brief look at the thrombin aspect.

On the surface of endothelial cells is a protein called thrombomodulin, which acts as a receptor for thrombin. When bound to thrombomodulin, throm­bin can activate protein C. Activated protein C then catalyzes the proteolytic cleavage of factors Va and Vila, thereby destroying their participation in blood clotting. Thus thrombin, which normally activates fib­rinogen, plays an opposite role in this case and inhibits the clotting process.[46,47] (See Table 7.)

On the other side of the coin, the endothelial cell becomes a procoagulant agent when acted on by cer­tain lymphokines, such as interleukin-1. Not only can interleukin-1 induce TF gene expression, but it also suppresses transcription of the thrombomodulin gene in endothelial cells. As in other situations, the lymphokine-activated endothelial cell expresses TF on its surface as a result of TF gene activation. This leads to the production of thrombin and the trigger­ing of the blood clotting cascade.[48] (See Table 5.) Many lymphokines also stimulate adhesion of leuko­cytes to endothelial cells damaged by MAT, resulting in recycling of the cells by MOBS, as described later.

DIC Induced by Intracellular Exotoxic, Mycotoxic, Oxidative Stress by Bacteria, Yeast/Fungus and/or Mold

Any cell which has gone from an oxidative to a fer­mentative state can biochemically cause macrophage production of the lymphokine tumor necrosis factor (TNF). This protein has been shown to activate the gene for TF in fermenting cells, which are so behaved due to morbid evolution of bacteria, yeast/fungus, and then mold.[49,50] In the author’s view, a cell having been switched entirely to fermentation metabolism as a result of a physical or emotional disturbance of that cell, is what constitutes cancer (see Tables 5 and 13). (One might argue that this definition does not fit all “forms” of cancer, such as leukemia, for example. This is because leukemia is not cancer, but an immune response to the rise in EMPO and MAT in the body, and a relatively easy compensation to correct.)

The surface of many disorganizing or fermented cells (cancer cells) is characterized by small projec­tions in the plasma membrane which pinch off, becoming free vesicles containing toxins as well as TF complexed with factor VII. These vesicles can aggre­gate and/or lodge anywhere, ultimately releasing their contents. Also, the presence of excessive amounts of TF/factor VII complexes on the surface of fermented cells allows the formation of a fibrin net around the cell and around the entire mass of cells (tumor). This seems to be an attempt by the body to encapsulate and contain the mass. However, fermented cells do escape from the primary fibrin net, perhaps due to some electromagnetic effect, and become free-float­ing in the circulation. They may thus lodge elsewhere and instigate the fermentation of other cells by fungal penetration or by poisoning them and provoking a morbid evolution of their inherent microzymas.

Because of the surrounding fibrin net, these mobi­lized fermenting cells are protected from collection by the immune system while in transit.[51,52] (See Table 4.) The blockage or dissolution of fibrin net forma­tion by an anticoagulant such as heparin allows freed, fermenting (metastasizing) cells to be dismantled by natural killer cells and other immune cells (see Tables 5, 12 and 13).

DIC Induced by MAT/EMPO and Immune System Response (Release of MOBS)

Unsaturated fatty acids are highly susceptible to EMPO as well as MAT. Linoleic acid, a long-chain fatty acid present in white cells, has 18 carbons and 2 unsaturations. Subjected to MAT, linoleic acid binds the exotoxin, endotoxin, or mycotoxin, there­by forming an epoxide at the first unsaturation.[53] Research has revealed that this compound, named leukotoxin, is highly disturbing to other cells. It caus­es platelet lysis, thereby releasing TF and initiating DIC.[54] (See Table 10.) The fact that MAT result in fermented fats lends further credence to the sugges­tion that the initial and primary degenerative damage to structures and substances in the body is caused by exotoxins and/or mycotoxins, and that damage by MOBS, or by other free radicals, is not possible.

Another mechanism leading to DIC is the release of a special glycoprotein, sialic acid, from the terminal ends of cell-membrane polysaccharides, where it is always found. Polysaccharides play a highly significant role in biochemical processes, with both enzymes and membrane receptors recognizing various groupings of specific sugars linked in highly specific ways.

Immediately preceding the release of sialic acid in the polysaccharide chain is the sugar galactose. The sialic acid/galactose arrangement is utilized as a biolog­ical indicator of cellular and molecular aging. As cells age, sialic acid is naturally expressed from the terminal ends of polysaccharides, thereby exposing galactose. A membrane-bound enzyme from the liver, galactose oxi­dase, recognizes galactose and eventually disorganizes it, disrupting cell function integrity and hastening demise. Aged red blood cells, which have expressed a significant amount of sialic acid, are removed from the blood by this process. (I theorize that the biological ter­rain may be at work in normal cell aging. That is, the rate at which sialic acid is expressed is determined by the levels of corrosive acids in the system and the body’s ability to remove them, although there are no doubt intracellular factors at work as well.)

I suggest from my years of  clinical research  that cellular breakdown is compounded by the fermentation of the galactose by the microzyma. This is a process that begins from within and not necessarily from without. Not only does this action create more sialic acid, it creates other toxic waste products such as acetic aldehyde, alcohol, uric acid, oxalic acid, etc. The increase in cellular disturbances and fermenta­tion of the galactose creates biochemical signals for more galactose oxidase. This leads to greater cellular disorganization and developmental morbidity, espe­cially in the red blood cells, and a rise in the level of detrital serum proteins, which encourages clotting. From this perspective, diabetes, arthritis, atheroscle­rosis and other symptomatologies become more clearly “degenerative” (see Tables 2-5, 12 and 13).

Fibrinogen is a rather elaborate protein having the structure of three beads on a string. Expressed on the end beads is sialic acid, which indicates the beginning of disorganization of the fibrinogen and a declining negative charge to the positive. Prior to the declining charge and the expression of sialic acid on the end beads, fibrinogen, which is negatively charged, will not polymerize the healthy blood due to mutual repulsion. However, fibrinogen will poly­merize to damaged cells, EMPO, MAT and other positively charged areas of the body for repair pur­poses. Thus, as more and more sialic acid is expressed, there will be a significant reduction in the charge of the fibrinogen, acting as the primary requirement for the polymerization of fibrinogen (hypercoagulable state). The resulting polymer, fib­rin monomer, is the protein chain used in the repair of cells and clotting of blood.[55] End-linking will take place after the release of sialic acid (positive charge) by whatever means.

With this background, it is interesting to note that blood taken from persons suffering from anxiety is expressing sialic acid from fibrinogen, and is halfway toward clotting. Hormones released during anxiety states are easily fermented, giving more momentum to MAT and thereby resulting in this important change in fibrinogen. It leads to a clotting pattern characteristic of anxiety stress, and is readily identi­fied in the MOST. As can be seen in this picture, the pattern is a “snowstorm” of protein polymeriza­tions measuring from 2 to 10 microns.

allergiesbefore

 

 

 

 

 

 

 

[Micrograph 2: An Anxiety Profile showing a ‘snowstorm’ of 2 to 10 micron protein polymerizations starting from the center of the clot and moving out towards the edge]

As mentioned earlier, despite the attempt by the body to neutralize EMPO and MAT, an excess will initiate the release of MOBS by immune cells. A major MOBS is superoxide, designated chemically as O 2. It may exist alone or be attached to another ele­ment, such as potassium (KO’2) or sulfur (SO). Again, however, nature has provided a means of pro­tecting healthy cells—their negative charge[1]. Another protection against superoxide is the enzyme superox­ide dismutase (SOD), also found in all healthy cells.

A second member of the MOBS family is hydro­gen peroxide (H202). This molecule is very unstable and tends to react rapidly with other biological mol­ecules, damaging them. The release of hydrogen per­oxide in the body is a response to the overgrowth of decompositional organisms in a declining pH (com­promised biological terrain). The control for healthy cells against hydrogen peroxide is their negative charge and the protective enzyme catalase, one of the most efficient enzymes known.

When leukocytes and other white blood cells are stimulated by the presence of bacteria, yeast/fungus and mold, they treat these organisms as foreign par­ticles to be eliminated. During and prior to phagocy­tosis, the foregoing oxidative cytotoxins, along with the hydroxyl radical (OH’), are generated and released specifically for neutralizing microforms or harmful substances. This release is referred to as an “oxidative burst.” As a result of fermentation and the production of exotoxins and mycotoxins that fer­ment galactose from cells, the immune system is activated. An oxidative burst is released to neutralize the morbid microforms and mycotoxicity.[56] Like other biological processes faced with constantly alarming situations, the continued release of MOBS can get out of control. This may damage endothelial cells, the basement membrane, or other body ele­ments, and this activates fibrinogen to fibrin monomer (repair protein), leading to DIC [see Table 9]. Interestingly, the white blood cells capable of neutralizing MAT through MOBS production are the same ones capable of phagocytosis, the process by which foreign matter, waste products and microor­ganisms are collected and dumped in the liver.[57]

To summarize this section, pathological microforms and their acids create DIC by a number of pathways:

Leukotoxin (linoleic acid bound to mycotoxin) is highly toxic to cells. It causes platelet lysis, there­by releasing TF and initiating DIC.

The expression or release of sialic acid residues from healthy cells that have been disturbed allows for the fermentation of galactose, creating exotox­ins and mycotoxins, biochemically activating galactose oxidase, which further disturbs and dis­organizes healthy cells. This cycle loads the blood with debris.

EMPO and MAT disturb fibrinogen, which releas­es sialic acid and reduces the charge, allowing it to polymerize into fibrin monomer and fibrin nets.

The presence of exotoxins, endotoxins, and myco­toxins and their poisoning of cells activates the immune system. White blood cells generate MOBS (e.g., superoxide [0′2] or hydrogen perox­ide [H202]). These substances bind to and neu­tralize EMPO and MAT. MOBS are repelled by healthy endothelial cells and the basement mem­brane because of their negative charge. Cellular disturbances and disorganization stimulate the generation of fibrin monomer for repair purposes, leading to DIC.

Detection of Disseminated Intravascular Coagulation

The Sonodot Analyzer

The Sonoclot Coagulation Analyzer provides a reaction-rate record of fibrin and clot formation with platelet interaction. An axially vibrating probe is immersed to a controlled depth in a 0.4 ml sample of blood. The viscous drag imposed upon the probe by the fluid is sensed by the transducer. The electronic circuitry quantifies the drag as a change in electrical output. The signal is transmitted to a chart recorder which provides a representation of the entire clot for­mation, clot contraction and clot lysis processes. The analyzer is extremely sensitive to minute changes in visco-elasticity and records fibrin formation at a very early stage. The Sonoclot has been evaluated scientif­ically and shown to provide an accurate measurement of the clotting process.[58,59]

One application of the Analyzer has been the development of a test to distinguish non-advanced breast cancer from tumors that are benign. The ratio­nale for the test is the hypercoagulable state seen in cancer patients (Trousseau’s Syndrome), resulting from the generation of TF by leukocytes (mono­cytes).[60] (See Table 4.)

Fibrin Degradation
Products and Fibrin Monomer

DIC can be seen as a two-step process. First, fib­rinogen, which is always present in the blood, is acti­vated by any of several mechanisms. This activation leads to an automatic polymerization (chain forma­tion) resulting in fibrin monomer. This is not apparent in a microscope unless the blood is allowed to clot, as in the MOST.[61,62] The second step is the precipitation or deposition of fibrin (hard clot) by several other mechanisms. One of these is the formation of cross­links through the action of factor XIII. Another such mechanism may be poor circulation in an organ already blocked by deposited fibrin. The deposition of precipitated fibrin may be detected microscopically in tissue sections and diagnosed as DIC.[62]

Because fibrin monomer is not readily detected, a chemical test for it is of immense value in diagnosing DIC. Research has indicated that its detection may be very useful in the early diagnosis of DIC and MAT.[63] There are three fundamental physiologic areas related to blood clotting: (1) the prevention of blood clotting, (2) the clotting of blood, and (3) the removal of clotted blood once it has formed.

Enzymes are present that are capable of removing (lysing) clotted blood, one of which is plasmin. Another enzyme, plasminogen, is always present in the blood, but is inactive as a proteolytic agent. Plasminogen acti­vator converts plasminogen to plasmin, which can degrade deposited fibrin. This process is not specific for fibrin, however, and other proteins may be affected. When fibrin is degraded (fibrinolysis), fibrin monomer, as well as several other products, are formed. Commercial kits are available for the analysis of fibrin degradation. This test is an indirect measure of the pres­ence of DIC and MAT.[64]

Other tests include:

Protamine Sulfate: Protamine sulfate is a heparin binder sometimes used in surgery for excessive bleed­ing. The test, which indicates fibrin strands and fibrin degradation products, is conducted in a test tube, with fibrin monomer and fibrin forming early and polymer­ization of fibrin degradation products occurring later.[65] Ethanol Gelation: A white precipitate is formed by the addition of ethanol to a solution in a test tube containing fibrin monomer as a degradation product of fibrin, indicating DIC and MAT.[66]

The Mycotoxic Oxidative Stress Test (MOST)

Up to now, blood chemistries have been the prima­ry mode of diagnosis or analysis for the presence of pathology. In the view presented here, the bright-field microscope, is used to easily and inexpensively reveal a disease state as reflected by changes in certain aspects of blood composition and clotting ability. DIC is char­acterized by the abnormal presence in the blood of fib­rin monomer. When allowed to clot, blood containing such an abnormal artifact will exhibit distortions of normal patterns. The presence in the blood of soluble fragments of the extracellular matrix and soluble fibronectin, as well as other factors, will also create abnormal blood clotting patterns as described below.

A small amount of blood from a fingertip is con­tacted with a microscope slide. A series of drops is allowed to dry and clot in a normal manner. Under the compound microscope, the pattern seen in healthy subjects is essentially the same—a dense mat of red areas interconnected by dark, irregular lines, completely filling the area of the drop. The blood of people under mycotoxic/oxidative stress exhibits a variety of characteristic patterns which deviate from nor­mal, but with one striking, common abnormality: “clear” or white areas, in which the fibrin net/red blood cell conglomerate is missing.

BowelCancerLive Blood Dried Blood_0166

 

 

 

 

 

 

 

 

[Micrograph 3; An abnormal clot with striking ‘clear’ or white areas or protein polymerization as seen in the hyper coagulated blood of a patient with lower bowel imbalances]

Why the fibrin net is missing may be understood from the following: Two peptides—A and B—in the central protein bead of the fibrinogen structure become bound in the cross-linking process. There are two ways this can be configured: (1) Thrombin is capable of activating peptides A and B, resulting in the formation of a polymer loosely held together only by hydrogen bonds; (2) With peptides A and B acti­vated normally, the resulting hard clot is insoluble, indicating that the peptides are linked by covalent bonds. The difference in bonds results from factor XIII, an enzyme which links the two fibrin strands with a glutamine-lysine peptide bond.

Additional research has shown that the release of sialic acid from fibrinogen inhibits the action of factor XIII, resulting in a soft, white clot. In addition, acetic aldehyde has been shown to inactivate factor XIII directly. The soft clotting, compounded by other polymeric aggregations (described below), results in clear areas in the dry specimens. In the opposite extreme, high serum levels of calcium, for the pur­pose of neutralizing MAT, activates factor XIII, lead­ing to excessive cross-linking of fibrin to form a clot harder than normal. This is reflected in the MOST pattern characteristic of definite hypercalcemia— that of a series of cracks in the clot radiating outward from the center, resembling the spokes of a wheel. High serum calcium is the body’s attempt to com­pensate for the acidity of mycotoxic stress by pulling this alkalizing mineral from bone into the blood. This demand creates endocrine stress in turn, because reabsorption of bone is mediated by parathormone (PTH). Therefore, this clotting pattern indicates cal­cium deficiency and thyroid/parathyroid imbalance.

calciumpattern

 

 

 

 

 

 

 

[Micrograph 4: A mineral deficiency or more specifically a calcium deficiency pattern associated with an imbalance of they thyroid and/or parathyroid}

Advanced research has shown that there are seven carbohydrate chains in fibrinogen (each terminated by sialic acid). A second action of factor XIII is to ferment a large amount of carbohydrate during clot­ting. Because carbohydrate is most often water solu­ble, the loss of this material undoubtedly adds to the insolubility of a clot, while pathological retention contributes to the softness of the abnormal clot.

Clinical experience demonstrates that the MOST is a reliable indicator of exotoxic and mycotoxic stress and, concurrently, of various disorganizing symptoma­tologies associated with fermentative and oxidative processes. As various cellular degradation occurs, the blood-borne phenomena which accompany such symptoms as diabetes, arthritis, heart attack, stroke, atherosclerosis and cancer show up in the MOST, often with sialic acid beads in the clear areas of poly­merized proteins. (Determination of the liberation of sialic acid from carbohydrate has been approved by the U.S. Food and Drug Administration as an accept­ed indicator for cancer, and is clinically available.)

sialicacid

[Micrograph 5: Sialic acid beads are seen inside the protein
polymerization of the hypocoagulated blood as black dots]

The extent and shape of the clear areas are reflec­tive of particular symptomatologies which have arisen from the way in which the disease condition manifests in a given individual. This observation is borne out by having the patient undergo appropriate alkalizing therapy. With success of treatment based on the patient’s freedom from symptoms, sense of well-being, and live blood exams discussed in the main text of Sick and Tired, Reclaim Your Inner Terrain, Appendix C,[7] repeated analysis with the MOST reveals a progressively improving clotting pattern.

[Micrographs 6 and 7: Medically diagnosed cancer patient with large polymerized protein pools (PPP) in the hypo-coagulated blood above. In the picture below PPP’s have significantly reduced in size and the blood is moving to a more hyper-coagulated state as a result of reducing acid loads with an alkaline lifestyle and diet (7, 70)]

Because of its very nature, the MOST is emi­nently suited to reveal and measure the presence in the blood of abnormal substances, clotting factors, and disorganization of cells due to an inverted way of living, eating, and thinking, which gives rise to MAT. The MOST indicates both the direct and indirect activity of MAT on blood clotting, endothelium, and the extracellular matrix (described next), as well as on biochemical pathways, including hormonal ones. The generation of excessive MOBS in response to EMPO and MAT, the inability that accompanies all degenerative symptoms to neutralize or eradicate EMPO and MAT, and the recognized hyper- and hypocoagulable states seen in various symptomatolo­gies, will beyond doubt be revealed in the MOST.

Aspergillusnigercrystal

 

 

 

 

 

[Micrograph 8 and 9: Medically Diagnosed HIV/AIDS micrograph showing above an Aspergullus niger mold crystal using dark field microscopy and below a hypocoagulated blood clot with systemic protein polymerizations measuring in excess of 40 microns using bright field microscopy}

HIV

 

 

 

 

 

 

As mentioned, hormones are easily fermented, and this will show up as a hypocoagulated blood pattern in the MOST. It is my opinion, this hypocoagulated blood appears in the MOST as misty clouds of protein polymerizations throughout the clot, as seen in the accompanying picture.

poorfibrin

[Micrograph 10: Poor fibrin interconnection in the clot associated with endocrine or hormonal imbalance]

The MOST from Solubilized Extracellular Matrix

There is now a clearer picture of the biochemical rationale for correlating abnormal blood clotting patterns with the presence of degenerative symptoms.  A link between symptoms and the distorted clotted blood patterns has been delineated in the MOST.
Another reason for the abnormal clotting patterns accompanying pathological states, in addition to insufficient bonding of fibrinogen peptides as seen in the MOST, is presence in the blood of water-soluble fragments of the extracellular matrix.

Extracellular Matrix Degradation by MAT

The extracellular matrix (EM) is a three-dimen­sional gel, binding cells together and composed of five or more major constituents: collagen (protein), hyaluronic acid (polysaccharide), proteoglycans (pro- tein/polysaccharide), fibronectin and laminin. Also included are glycosaminoglycans and elastin.[67] In every degenerative disease studied by this author, evidence has been found for MAT activity destruc­tive of EM.

One of the proteolytic enzymes activated in response to EMPO and MAT is alpha-1 antitrypsin (capable of neutralizing MAT), normally not active in the presence of the enzyme trypsin. The active por­tion of this anti-exotoxin and antimycotoxin contains the amino acid methionine, which includes a C-S-C linkage. When chelated by the hydroxyl radical (one of the MOBS oxidants), methionine’s central sulfur atom acquires one or two oxygen atoms (forming the sulfone or sulfoxide respectively). The fermentation of methionine is a secondary effect of immune response to an alarming situation, intended to neutral­ize MAT and prevent degradation of the EM. Once alpha-1 antitrypsin is exhausted, MAT will have more access to the EM. If the EM is damaged beyond repair, then the enzyme trypsin is released to disorganize and recycle the cells involved.[68]

A similar scenario holds for the enzymes collage- nase and elastase. Thus, the absence of alpha-1 antitrypsin in the presence of EMPO and MAT activates three enzymes which degrade the extracellular matrix. Degradation of the EM by enzymes and MAT puts into the blood the water-soluble fragments (proteins and glycoproteins) of normally insoluble EM components (see Table 11). The presence of these fragments modifies the normal clotting pattern (described below), as seen in the M/OST, and is therefore an indication of EM degradation, which is always found with degenerative symptoms. (Also present is fibrin monomer, which has been found in the blood of patients suffering from collagen dis­ease.[69] See Table 11.)

Fibronectin is a molecule in EM having several binding sites for various long-chain molecules— heparin (a sulfonated polysaccharide) and collagen, for example. As such, it functions as a cellular glue, bind­ing cells together as well as various components of the EM. A soluble form of fibronectin is normally found free in the blood, and enters into the formation of a blood clot through the action of factor XIII. This form of fibronectin binds to fibrin. Elevated, bound-serum fibronectin results from EM fragmentation by MAT, and accompanies degenerative symptoms such as arthritis and emphysema (collagen diseases).

Water-soluble fragments of the EM bound by fibronectin form a three-dimensional network or gel in the pathologically clotted blood (fibrin and com­ponents of the blood clotting cascade). Since fibronectin binds to both fibrin and collagen, the two polymeric networks are superimposed and intermin­gled, resulting in a modification of the normal clot­ting pattern. Exactly how the pattern is modified depends upon the nature of the collagen abnormally present, the nature and extent of hyaluronate pre­sent, and the degree to which EM fibronectin has been released by MAT.

Conclusion

Thus, it is easily seen that there are many forms which the pattern of clotted blood may take, depending on the individual and the internal terrain that produced the modifying substances. The MOST reveals not only the presence of exotoxic and mycotoxic stress, but indicates as well the nature of the symptom(s) resulting from the stress (see Table 12). Since MAT underlie the entire complex of events which degrade the extracellular matrix, I must conclude that the absence of these exotoxins, endotoxins and mycotoxins would provide substantial improvements in tissue integrity and the overall physiology and functionality of the organism or animal and human.

­

­

References

[1]  Jones, T.W., “Observations on some points in the anatomy, physiology and pathology of the blood.”  British Foreign Medical Review, 1842. 14 : 585.

[2] Trousseau, A., Phlegmasis alba delens. “Clinque Medicale de L’Hotel Dieu de Paris.”, 1865, 3:94

[3]  Virchow, R., “Hypercoagulability: A review of its development, clinical application, and recent progress.”  Gesammelte Abhandlungen our Wussenschaftlichen Medizin, 1856, 26:477.

[4]  Rapaport, S.I., “Blood Coagulation and its Alterations in Hemorrhagic, and Thrombotic Disorders.”  The Western Journal of Medicine, 1993; 158: 153.

[5]  Hamilton, P.J. et al., “Disseminatied Intravascular Coagulation: A Review.”  Journal of Clinical Pathology, 1978, 31: 609

[6] The Harper Collins Illustrated Medical Dictionary, 1994, p.13.

[7] Young, RO, “Sick and Tired, Reclaim Your Inner Terraine,” Woodland Publishing, 1999.

[8] BeChamp, A., “The Blood and Its Third Anatomical Element,”  Hikari Omni Publishing, 1999.

[9]  Schwerdtle, C, Arnoul, F, Enerlein, G, “Introduction to Darkfield Diagnostics”, Semmelweis-Verlag (2006).

[10]  Hawk, BO, Thoma, GE, Inkley, JJ, The Evaluation of the Bolen Test as a Screening Test for Malignancy*, cancerres.aacrjournals.org on December 5, 2015. © 1951 American Association for Cancer Research.

[11]  Uchida, K., “Role of Reactive Aldehyde in Cardiovascular Diseases”,  Labortory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan , Free Radical Biology and MedicineVolume 28, Issue 12, 15 June 2000, Pages 1685–1696

 [12] Chang JCvan der Hoeven LHHaddox CH, “Glutathione reductase in the red blood cells”,  Ann Clin Lab Sci. 1978 Jan-Feb;8(1):23-9.

[13] Kutzing, MK, Firestein, BL, “Altered Uric Acid Levels and Disease States”, Department of Cell Biology and Neuroscience (M.K.K., B.L.F.), Graduate Program in Biomedical Engineering (M.K.K.), Rutgers University, Piscataway, New Jersey. Address correspondence to: Dr. Bonnie L. Firestein, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082. E-mail: firestein@biology.rutgers.edu

[14] Claudino, M,. Ceolin,,DS, Alberti, S.,  Cestari, TM,  Spadella, CT, Fischer Rubira-Bullen, IR, Gustavo Pompermaier Garlet, Gerson Francisco de Assis, ” Alloxan-Induced Diabetes Triggers the Development of Periodontal Disease in Rats”,  Published: December 19, 2007. DOI: 10.1371/journal.pone.0001320

[15] Young RO (2015), “Alkalizing Nutritional Therapy in the Prevention and Reversal of any Cancerous Condition. Int J Complement Alt Med 2(1): 00046. DOI: 10.15406/ijcam.2015.02.00046

[16] Heloise Pöckel FernandesCarlos Lenz Cesar, and  Maria de Lourdes Barjas-Castro, “Electrical properties of the red blood cell membrane and immunohematological investigation”, Rev Bras Hematol Hemoter. 2011; 33(4): 297–301. doi:  10.5581/1516-8484.20110080 PMCID: PMC3415751

[17] Harris, JO, “The Relationship Between the Surface Charge and the Absorption of Acid Dyes by Bacterial Cells”, Department of Bacteriology, Kansas Agricultural Experiment Station, Manhattan,Kansas, Received for publication March 3, 195.

[18] Young, RO, “Metabolic and Dietary Acids are the Fuel That Lights the Fuse that Ignites Inflammation that Leads to Cancer”. https://www.linkedin.com/pulse/metabolic-dietary-acids-fuse-ignites-inflammation-causes-young. 2015.

[19] Snaders, R, “Did Bacteria Spark Evolution of Multicellular Life?” Berkeley News, Research, Science and Environment,  October 24, 2012.

[20] Wenner, M, “Humans Carry More Bacterial Cells than Human Ones”. Scientific American, November 30th, 2007.

[21} Animals and humans respond to MAT as a poison.

[22]  Morrison, D.C. et al. The effects of bacterial endotox­ins on host mediation systems. American Journal of Pathology, 1978; 93: 526.

[23]  Ibid.

[24]  Ibid.

[25]  Van Deventer, S.J.H. et al. Intestinal Endotoxemia. Gastroenterology, 1988; 94(3): 825-831.

[26]  Morrison, D.C. et al., op. cit.

[27]  Ibid.

[28]  Hu, T. et al. Synthesis of tissue factor messenger RNA and procoagulant activity in breast cancer cells in response to serum stimulation. Thrombosis Research, 1993; 72: 155.

[29]  Rapaport, op. cit. (Ref. 4).

[30]  Ibid.

[31]  Mackman et al. Lipopolysaccharides—mediated tran­scriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. Journal of Experimental Medicine, 1991; 174: 1517.

[32]  Yamada, O. et al. Deleterious effects of endotoxins on cultured endothelial cells: An in vitro model of vascular injury. Inflammation, 1981; 5: 115.

[33]  Colucci, M. et al. Cultured human endothelial cells: An in vitro model of vascular injury. Journal of Clinical Investigation, 1983; 71: 1893.

[34]  Cho, T.H. et al. Effects of Escherichia coli toxin on structure and permeability of myocardial capillaries.

[35]  Acta Pathologica Japonica, 1991; 41: 12.

[36]  Rapaport, op. cit. (Ref. 4).

[37]  Ibid.

[38]  Margolis, J. The interrelationship of coagulation of plasma and release of peptides. Annals of the New York Academy of Sciences, 1963; 104: 133.

[39]  23-25. Ibid.

[40]  Morrison, D.C. et al., op. cit.

[41]  Rapaport, op. cit. (Ref. 4).

[42]  Alberts, B. et al, eds. Molecular Biology of the Cell. New York: Garland Publishing, Inc., 1989 (2nd ed.), p. 818.

[43]  Rapaport, op. cit. (Ref. 4).

[44] Bertz, A., et al. Modulation by cytokines of leukocyte endothelial cell interactions. Implications for thrombo­sis. Biorheology, 1990; 27: 455.

[45]  Rapaport, op. cit. (Ref. 4).

[46]  Nachman, R.L. et al. Hypercoagulable states. Annab of Internal Medicine, 1993; 119: 819.

[47]  Ibid.

[48]  Tallman, M.S., et al. New insights into the pathogene­sis of coagulation dysfunction in acute promyelocytic leukemia. Leukemia and Lymphoma, 1993; IT. 27.

[49]  Silberberg, J.M., et al. Identification of tissue factor in two human pancreatic cancer cell lines. Cancer Research, 1989; 49: 5443.

[50]  Grimstad, I.A. et al. Thromboplastin release, but not content, correlates with spontaneous metastasis of can­cer cells. International Journal of Cancer, 1988; 41: 427.

[51]  Gunji, Y. et al. Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Research, 1988; 48: 5216.

[52]  Sugiyama, S. et al. The role of leukotoxin (9, 10- epoxy-12-octadecenoate) in the genesis of coagulation abnormalities. Life Sciences, 1988; 43: 221.

[53]  Ibid.

[54]  White, A. et al, eds. Principles of Biochemistry. McGraw-Hill Book Co., New York, 1964, p. 648.

[55]  Mueller, H.E. et al. Increase of microbial neu­raminidase activity by the hydrogen peroxide concen­tration. Experientia, 1972; 23: 397.

[56]  Young, Robert O. Fermentology and oxidology. The study of fungus-produced mycotoxic species and the activation of the immune system and release of microzymian oxidative buffering species (MOBS). Self- published: InnerLight Biological Research Foundation, Alpine, Utah, 1994.

[57]Chandler, WL. et al. Evaluation of a new dynamic vis­cometer for measuring the viscosity of whole blood and plasma. Clinical Chemistry, 1986; 32: 505.

[58]  Saleem, A. et al. Viscoelastic measurement of clot for­mation: A new test of platelet function. Annals of Clinical and Laboratory Science, 1983; 13: 115.

[59]  Spillert, C.R. et al. Altered coagulability: An aid toselective breast biopsy. Journal of the National Medical Association, 1993; 85: 273.

[60]  Bowie, E.J. et al. The clinical pathology of intravascular coagulation. Bibliotheca Haematologica, 1983; 49: 217.

[61]  Muller-Berghaus, G. et al. The role of granulocytes in the activation of intravascular coagulation and the pre­cipitation of soluble fibrin by endotoxin. Blood, 1975; 45: 631.

[62]  Bick, R.L. Disseminated intravascular coagulation. Hematology/Oncology Clinics of North America, 1993; 6: 1259.

[63]  Bredbacka, S. et al. Laboratory methods for detecting disseminated intravascular coagulation (DIC): New aspects. Acta Anaesthesiologica Scandinavica, 1993; 37: 125.

[64]  Sigma Diagnostics, St. Louis, MO 63178; tel: 314- 771-5765.

[65]  Nachman, R.L. et al. Detection of intravascular coag­ulation by a serial-dilution protamine sulfate test. Annals of Internal Medicine, 1971; 75: 895.

[66]  Breen, F.A. et al. Ethanol gelation: A rapid screening test for intravascular coagulation. Annals of Internal Medicine, 1970; 69: 1197.

[67] Hay, E.D., ed. Cell Biology of Extracellular Matrix. New York: Plenum Press, 1981, p. 653.

[68]  Carp, H. et al. In vitro suppression of serum elastase- inhibitory capacity by ROTS generated by phagocytos- ing polymorphonuclear leukocytes. Journal of Clinical Investigation, 1979; 63: 793.

[69]  Wilson, C.L. The alternatively spliced V region con­tributes to the differential incorporation of plasma and cellular fibronectins into fibrin clots. Journal of Cell Biology, 1992; 119: 923.

[70] Young, RO, Young, SR, “The pH Miracle Revised and Updated”, Hachette Publishing, 2010.

Tables

Table 1

Expression of Sialic Acid/Galactose [MAT] from Cell and Protein Degeneration (From All Serum Proteins, RBC/WBC and Other Cell Surfaces)

  1.  Carbohydrate, Proteins, and Fats From Diet, Body Cells or Reserves
  2. As cells breakdown or ferment they give birth to bacteria, yeast, fungus and mold [EMPO] and their associated metabolic acidic waste [MAT]
  3. Exotoxins, Endotoxins, and Mycotoxins [MAT]
  4. Acetyl Aldehyde, Ethyl Alcohol, Uric Acid, Alloxan, Lactic Acid are examples of MAT
  5. MAT  Ferments Other Body Cells and their Extracellular Membranes and Proteins
  6. MAT Modifies Glycoprotein
  7. Binds to liver Galactosidase
  8. Creating an Increase in Cell and Protein Fermentation and Degeneration and Increased Amounts of Exotoxins, Endotoxins and Mycotoxins [MAT]

Table1a

Table 2

Expression of Sialic Acid [MAT] From the Fermentation of Degeneration of Insulin Producing Pancreatic Beta-Cells in Type I, Type II and Type III Diabetes

  1. Pancreatic Insulin producing Beta-Cells with no or minimal Surface Sialic Acid [MAT]A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Diet
  2. Normal regulation of Insulin Production
  3. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choicesdd
  4. Leads to cellular fermentation and degeneration and the birth of EMPO
  5. This lead to increased abnormal amounts of MAT that the immune system, the alkaline buffering system and the elimination organs has to deal with
  6. Fermenting and degenerating Insulin Producing Beta Cells
  7. Giving Rise to Surface Cell Sialic Acid [MAT}
  8. Increased Amounts of Sialic Acid Activates the Immune Response [MOBS] and Sialidase [AB]
  9. Leads to Lowered or No Insulin Production
  10. Symptoms of Type I, Type II or Type III Expressed
  11. The insulin producing beta cells of the Islets of Langerhans express silica acid on their surface as a break down metabolite.  I have suggested that when insulin producing beta cells are physically disturbed by MAT they begin to disorganize and express sialic acid on the surface of the cell.  This indicates the death of the cell and insulin production will stop.

Table2a

Table 3

HIGH BLOOD PRESSURE, ATHEROSCLEROSIS, HEART ATTACKS, STROKES, and CONGESTIVE HEART FAILURE

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the immune system to chelate the MAT.
  4. Increased amounts of MAT will cause endothelial breakdown and the expression of Sialic acid.
  5. Increased Amounts of Sialic Acid and damage to the endothelial will cause a reduction in the negative surface-charge leading to the release of Glycoproteins.
  6. The release of Glycoproteins will cause the activation of Factor XII and the blood clotting cascade.
  7. This cause the creation and formation of fibrin monomers and the increase of Platelet Deposition out of the red blood cells for clotting purposes
  8. The immune system will activate and MOBS will be released as well as sodium bicarbonate, calcium, lipids and other alkaline buffers to reduce metabolic acidity.
  9. The build-up of fibrin monomers in the clotting cascade will lead to fibrin nets and clots causing an increase in blood pressure and the risk of blockages potentially causing a Stroke or Heart Attack.

Table3a

Table 4

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
FROM INTRACELLULAR DISORGANIZATION OR FERMENTATION WHICH GIVES RISE TO MAT
 AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII (VIIa) and trace amounts of Factor Xa into the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activation of the blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated these unhealthy cells to protect healthy body cells.
  11. As body and blood cells breakdown from MAT this causes an increase of MAT and EMPO leading to systemic latent tissue acidosis and a potential metastatic cancerous condition.

Table4a

 Table 5

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
IN CELLULAR DISORGANIZATION OR FERMENTATION/OXIDATON AND THE INCREASE OF MAT AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices.
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII and Factor Xa in the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activated blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated the unhealthy cells.
  11. This leads to tumor formation of the unhealthy or cancerous cells.
  12. As the body and blood cells breakdown this causes an increase of MAT and EMPO leading to an increased risk of  systemic metastatic cancer.

Table5aTable 6

ENDOTHEIAl CELL CONVERSION FROM AN
ANTITHROMBOTIC STATE TO A PROCOAGULANT STATE
CELLULAR DISORGANIZING PATHWAY

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This leads to increased abnormal amounts of MAT that damages the protective endothelial cover cells leading to a reduction of PGI2
  4. The absence of PGI2 causes the release of Interleukin-1 and/or Tumor Necrosis Factor (TNF).
  5. In addition the loss of protective endothelial cover cells leads to Tissue Factor Gene Activation and the release of Thrombin causing a pro-coagulate state leading to DIC
  6. Another pathway to DIC would be the loss of protective endothelial cover cells and the absence of PGI2 causes the suppression of Thromomodulin, Protein C leading to procogradulation and DIC.

Talble6

 Table 7

ENDOTHELIAL CELL CONVERSION
FROM AN ANTITHROMBOTIC STATE
(NORMAL PATHWAY)

Table7

Table 8

MECHANISM OF DISSEMINATED INTRAVASCULAR COAGULATION GENERATED BY MAT

Table8Table 9

ACTIVATION OF SIALIDASE AND MICROZYMIAN OXIDATIVE BUFFERING SPECIES (MOBS) BY EMPO AND MAT

Table9

Table 10

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING FROM PHAGOCYTIC OXIDATIVE BURST

Table10

Table 11

MOST BLOOD TEST and DISSEMINATED INTRAVASCULAR COAGULATION WITH SOLUBILIZED EXTRACELLULAR MATRIX

Table11

Table 12

TYPICAL SOURCES OF FERMENTATION INSULT (MAT) IN BIOLOGICAL SYSTEMS INITIATING DIC

Table12

Table 13

POSITIVE CHARGE OF CANCEROUS CELLS AND TUMORS AND THE FORMATION OF FIBRIN NETS AND TREES IN RESPONSE TO MAT

Table13

This Christmas Eve!

10857963_640333402744840_2387762680237609989_n

In keeping with the festive season: A bit like Rudolph the red nosed reindeer! He wasn’t accepted by is peers because he looked different (and maybe acted ‘nuts’) but as soon as he was recognised as a beacon of light in the wintry, dark sky, he was accepted by all!!

The Truth About Alkalizing Your Blood, Interstitial and Intracellular Fluids!

The following article is Dr. Robert O. Young’s rebuttal to Dr. Ben Kim’s felacous statements concerning the bio-electro/chemistry of the blood and tissues.
 

April 12, 2012

The Truth About Alkalizing Your Blood

Dr. Ben Kim states: Is it true that the foods and beverages you consume cause your blood to become more alkaline or acidic? Contrary to popular hype, the answer is: not to any significant degree.

Dr. Robert O. Young states: The pH of blood and interstitial fluids are constantly being challenged with environmental, dietary, respiratory, and metabolic acids. The body deals with blood acids by eliminating these acids through the four channels of elimination (urination, perspiration, defecation and respiration) and the buffering of acids through the alkaline buffering system in order to maintain the delicate pH balance of the blood plasma and interstitial fluids at 7.365.

Dr. Kim Ben states: The pH of your blood is tightly regulated by a complex system of buffers that are continuously at work to maintain a range of 7.35 to 7.45, which is slightly more alkaline than pure water.

Dr. Robert O. Young states: The pH of your extracellular fluids, which includes the blood plasma and the interstitial fluids are kept at a very narrow range at 7.365 to 7.385. Any pH measurement of blood plasma in excess of 7.385 indicates a condition of compensated acidosis and any pH measurement of blood plasma or interstitial fluids below 7.365 indicates a condition of decompensated acidosis.

Screen Shot 2018-11-25 at 10.08.28 AM

When the pH of the blood plasma increases above the 7.385 this is the result of the blood pushing environmental, dietary, respiratory and metabolic acids out into the interstitial fluids of the colloidal connective tissues of the schade as the blood is pulling alkaline mineral salts such as calcium ions from the bones or magnesium ions from the muscles to offset the increase of acids in the blood. It is always a sure sign that as the blood plasma is becoming more alkaline the interstitial fluids of  the colloidal connective tissues of the schade are becoming more acidic and this is the cause of ALL inflammatory and degenerative diseases.

When the body tissues, organs, cells, or the alkaline reserves (sodium, calcium, magnesium and potassium) become deficient in alkaline minerals the blood plasma pH will drop below the ideal 7.365 causing decompensated acidosis leading to hemolysis at a pH below 7.365 or a coma and/or death at a pH below 7.2.

Dr. Kim Ben states: If the pH of your blood falls below 7.35, the result is a condition called acidosis, a state that leads to central nervous system depression. Severe acidosis – where blood pH falls below 7.00 – can lead to a coma and even death.

Dr. Robert O. Young states: If pH of the blood plasma drops below 7.365 the result is called decompenated acidosis.  If the pH of the blood plasma stays at the ideal 7.365 this is called compensated acidosis. And if the pH of the blood plasma increases above the 7.365 this is called “latent tissue acidosis” in the interstitial fluids of the colloidal connective tissues of the schade.

The blood plasma pH always goes alkaline when the blood pushes out environmental, dietary, respiratory or metabolic acids out into the interstitial fluids of the colloidal connective tissues of the schade. These acids are always deposited into what I call the ‘acid catchers’ which are the connective tissues of the schade. This leads to what I call ‘latent tissue acidosis’.

As acids build-up in the colloidal connective tissues of the schade and if NOT eliminated by the lymphatic system and the out through the channels of elimination, including the skin, lungs, bowels or urine this will result in ALL the connective tissue diseases and degenerative diseases, including ALL cancerous conditions.

Dr. Kim Ben states: If the pH of your blood rises above 7.45, the result is alkalosis. Severe alkalosis can also lead to death, but through a different mechanism; alkalosis causes all of the nerves in your body to become hypersensitive and over-excitable, often resulting in muscle spasms, nervousness, and convulsions; it’s usually the convulsions that cause death in severe cases.

Dr. Robert O. Young states: If the blood plasma pH increases over 7.385 you are in a state of ‘latent tissue acidosis’ of the interstitial fluids on the colloidal connective tissue of the shade and a high risk for cancer. This is what I call the “tee-ter-totter effect”. The body is pulling alkaline minerals into the blood to compensate for an equal amount of acids being pushed out into the interstitial fluids of the connective tissues of the schade to keep the blood plasma in an alkaline state. The result is tissue acidosis which then leads to hypersensitivity and over-excitable nerves, muscle spasms, nervousness and convulsions that can lead to coma or even death.  All of these symptoms are NOT a result of too much base or alkalinity but the result of too much acid from the blood being deposited into the interstitial fluids of the colloidal connective tissues of the schade. The cause of ‘latent tissue acidosis’ is caused by an acidic lifestyle and dietary choices.

Dr. Kim Ben states: The bottom line is that if you’re breathing and going about your daily activities, your body is doing an adequate job of keeping your blood pH somewhere between 7.35 to 7.45, and the foods that you are eating are not causing any wild deviations of your blood pH.

Dr. Robert O. Young: The bottom line is when you understand that having an acidic lifestyle and diet does affect the blood plasma and interstitial fluid pH in a negative way.

The blood responds to increased acids from lifestyle and diet by pushing them out into the interstitial fluids of the connective tissues or the colloidal connective tissues of the schade. The foods you eat, the liquids you drink, the air you breath, even your thoughts will effect the pH of blood and then the interstitial fluids of the colloidal connective tissues. The blood is constantly responding to the acidic wastes of lifestyle and diet choices!!!!!!!!!!!

Dr. Kim Ben stated: So what’s up with all the hype about the need to alkalize your body? And what’s to be made of the claim that being too acidic can cause osteoporosis, kidney stones, and a number of other undesirable health challenges?

Dr. Robert O. Young states: The hype about alkalizing your blood and then interstitial fluids of the connective tissues is important because the human body is alkaline by design and acidic by function. This is the foundation for understanding the true cause of ALL sickness and disease.

Dr. Kim Ben states: As usual, the answers to such questions about human health can be found in understanding basic principles of human physiology. So let’s take a look at the fundamentals of pH and how your body regulates the acid-alkaline balance of its fluids on a moment-to-moment basis.

Dr. Robert O. Young states: The problems with current understanding of the basic principals of human physiology is the basic principals do NOT understand that the human body is alkaline by design and acidic by function. Current medical savants DO NOT understand that there is only one health, one sickness, one disease and one treatment. The one health is to maintain the alkaline design of the blood and interstitial fluids of the connective tissues with an alkaline lifestyle and diet. The one sickness and one disease is the over-acidification of the blood and then tissues due to an inverted way of living, eating and thinking. The one treatment is to restore the alkaline design of the body fluids with an alkaline lifestyle and diet. Remember the fish bowl metaphor? It goes like this – When the fish is sick what would you do? Treat the fish or change the water? Remember the fish is only as healthy as the water it swims in.

Dr. Kim Ben states: pH is a measure of how acidic or alkaline a liquid is. With respect to your health, the liquids involved are your body fluids, which can be categorized into two main groups:

  1. Intracellular fluid, is the fluid found in all of your cells. Intracellular fluid is often called cytosol, and makes up about two-thirds of the total amount of fluid in your body.

  2. Extracellular fluid, is the fluid found outside of your cells. Extracellular fluids are further classified as one of two types:

    • Plasma, which is fluid that makes up your blood.
    • Interstitial fluid, which occupies all of the spaces that surround your tissues. Interstitial fluid includes the fluids found in your eyes, lymphatic system, joints, nervous system, and between the protective membranes that surround your cardiovascular, respiratory, and abdominal cavities.

      Your blood (plasma) needs to maintain a pH of 7.35 to 7.45 for your cells to function properly. Why your cells require your blood to maintain a pH in this range to stay healthy is beyond the scope of this article, but the most important reason is that all of the proteins that work in your body have to maintain a specific geometric shape to function, and the three-dimensional shapes of the proteins in your body are affected by the tiniest changes in the pH of your body fluids.

Dr. Robert O. Young states: pH is a measurement of the concentrations of hydrogen and hydroxyl ions in a aqueous solution. Any aqueous solutions, including your blood plasma interstitial fluids of the colloidal connective tissues of the schade (the largest organ of the human body) and the intracellular fluids that are saturated in hydrogen ions is less or more acidic and any aqueous solution that is saturated in hydroxyl ions is less or more base or alkaline.

Once again, the human body is alkaline in its design and acidic in its function. Your blood plasma and interstitial fluids of the colloidal connective tissue of the schade needs to be maintained at a delicate pH of 7.365 for your cells to function properly.

I have found in my own blood research that when your pH is stable at 7.365 you find healthy blood which is even in color, even in size and even in shape. The red blood cell is the primary stem cell which becomes all other body cells. And the health of the blood and the interstitial fluid of the colloidal connective tissues of the shcade is directly connected to the health of all body cells. It is blood that becomes, liver, heart, brain and skin cells. All red blood cells and then body cells are made up of microzymas.

Microzymas are the foundational, indestructable matter and intelligent matter that makes up all living cells, including the DNA. The tiniest changes in the pH of the body fluids can cause the microzymas in the red blood cells or body cells to change into bacteria, yeast and/or mold. This is how germs are created – from within NOT from without.

Dr. Kim Ben states: The pH scale ranges from 0 to 14. A liquid that has a pH of 7 is considered to be neutral (pure water is generally considered to have a neutral pH). Fluids that have a pH below 7 – like lemon juice and coffee – are considered to be acidic. And fluids that have a pH above 7 – like human blood and milk of magnesia – are considered to be alkaline.

Dr. Robert O. Young states: The pH scale ranges from 0 to 14 with the pH of 7 being the midpoint (pure water may have a pH of 7 but I have found that the pH of pure water has a range of 6.2 to 7.2 – a 10 times exponential swing. I have also found that pure water has an oxidative reduction potential in a range of +50mV to +150mV) which will drain energy from the body. Lemon is an alkaline fruit not an acidic fruit. This is because of its low sugar and high alkaline mineral content of potassium bicarbonate. Lemons do not draw down on the alkaline buffering system and contributes in excess of 10 times in hydroxyl ions (OH-) in relationship to its hydrogen ion content.

Dr. Kim Ben states: It’s important to note that on the pH scale, each number represents a tenfold difference from adjacent numbers; in other words, a liquid that has a pH of 6 is ten times more acidic than a liquid that has a pH of 7, and a liquid with a pH of 5 is one hundred times more acidic than pure water.  Most carbonated soft drinks (pop) have a pH of about 3, making them about ten thousand times more acidic than pure water. Please remember this the next time you think about drinking a can of pop.

When you ingest foods and liquids, the end products of digestion and assimilation of nutrients often results in an acid or alkaline-forming effect – the end products are sometimes called acid ash or alkaline ash.

Dr. Robert O. Young states – All food and drink which has a pH of less than 8.4 will cause the production of sodium bicarbonate by the stomach and the release of this sodium bicarbonate via the salivary glands, the pylorus glands, the pancreas, gall bladder and intestinal glands to alkalize whatever ingested. The main purpose of stomach is to prepare the food in a liquid state at a pH of 8.4 for biological transformation into stem cells which takes place in the crypts of the small intestines.

Dr. Kim Ben states: Also, as your cells produce energy on a continual basis, a number of different acids are formed and released into your body fluids. These acids – generated by your everyday metabolic activities – are unavoidable; as long as your body has to generate energy to survive, it will produce a continuous supply of acids.

Dr. Robert O. Young states: Metabolism produces acidic waste products of lactic, uric, citric and glucose if not eliminated will cause dis-ease and then disease. You are only as healthy as the alkaline fluids of the body which includes the extracellular and intracellular fluids.

Dr. Kim Ben states: So there are two main forces at work on a daily basis that can disrupt the pH of your body fluids – these forces are the acid or alkaline-forming effects of foods and liquids that you ingest, and the acids that you generate through regular metabolic activities. Fortunately, your body has three major mechanisms at work at all times to prevent these forces from shifting the pH of your blood outside of the 7.35 to 7.45 range.

Dr. Robert O. Young states: There are seven main sources at work on a daily basis that can disrupt the pH of your body fluids – these forces include acids from the external environment, acids from the foods and liquids ingested, acids from the air you breath, acids from metabolism, acids from cells breaking down or catobolic acitivity, acids from endogenous bacteria, yeast and mold, and acids from respiration. Your body has an elaborate alkalizing buffering system at work at all times to help prevent through chelaton these forces from shifting the pH of the blood plasma pH as well as the interstitial fluid pH at a delicate pH of 7.365. It is important to note that when the alkaline buffering system (a new organ discovered by Dr. Robert O. Young) becomes depleted and acids are being deposited into the interstitial fluids of the colloidal connective tissues and the fatty tissues this is when dis-ease and eventual disease manifests.

Dr. Kim Ben states:

These mechanisms are:

  1. Buffer Systems

    • Carbonic Acid-Bicarbonate Buffer System
    • Protein Buffer System
    • Phosphate Buffer System
  2. Exhalation of Carbon Dioxide
  3. Elimination of Hydrogen Ions via Kidneys
 
Dr. Robert O. Young states: There are ten (10) mechanisms that the body engages to buffer excess acids from lifestyle and dietary choices that are NOT properly eliminated through the four channels of elimination (bowels, kidney, skin and lungs):
1) The sodium bicarbonate system – the main organ of production is the stomach. The stomach is the major organ for sodium bicarbonate production for alkalizing food and maintaining the alkaline pH of the blood, tissues and organs.
2) The hemoglobin buffering system – the hemoglobin is a secondary alkalizing buffer for the blood when there is insufficient elements for the production of the primary buffer, sodium bicarbonate. This is the main cause of ALL blood diseases and why most all the client/patients I see have to a lesser or greater degree anemic and unhealthy blood.
3) The pHosphate buffering system which buffers acids creating phosphoric acid which is then excreted via the urine.
4) The ammonia buffering system reacts with hydrogen ions or acids to form ammonium ions which are excreted into the urine.
5) The plasma protein buffering system helps to chelate acids. The most plentiful type of buffer in the body including glutathione, methionine, cysteine and taurine which are found in the cells, lymph fluid and plasma.  Most plasma protein activity occurs intracellularly to bind or neutralize acids during cellular metabolism and/or disorganization or transformation of the human cell.
6) The electrolyte buffering system which includes the alkalizing mineral salts of sodium, magnesium, potassium and calcium. The chelation of any acid will form a less toxic solid or a stone in the body. All stones and cysts and tumors are the result of excess acids in the extra and intracellular fluids. The electrolyte or mineral buffers work in the blood, lymph, extracellular (blood plasma and interstitial fluids) and intracellular fluids to bind acids which are then removed via the urine. These four elements are recycled by the kidneys into the blood and lymph by binding them to CO2. Over 90 percent of the CO2 produced in the body through cellular fermentation in the production of energy is used to carry out this recycling process.
7) The low density lipo-protein buffering system also referred to as cholesterol works primarily as a binder of acids in the blood, lymph, and extracellular fluids which are then excreted via the urine. If elimination is compromised the fat bound acids are removed away from the organs that sustain life into the body cavities, hips, thighs, buttocks and abdominal area. This is the cause of over-weight and obesity.
8) The endocrine buffering system releases hormones to buffer acids. These hormones include the antidiuretic hormone which regulates the rate at which water is lost or retained by the body and aldosterone which regulates the level of sodium ions and potassium ions in the blood. These two alkaline secretions help the kidneys maintain the alkaline design of the body and reduce excess acidity thus creating pH balance in the body.
9) The release of free radicals or reduced hydrogen (OH- and SO-) by the lymphocytes to buffer excess acids in the blood, interstitial and intracellular fluids.
10) The retention of alkaline water to buffer excess acids in the colloidal connective tissues of the schade. This is the cause of edema or water retention.
Dr. Kim Ben states: It’s not in the scope of this post to discuss the mechanisms listed above in detail. For this article, I only want to point out that these systems are in place to prevent dietary, metabolic, and other factors from pushing the pH of your blood outside of the 7.35 to 7.45 range.
Dr. Robert O. Young states: The blood can be stressed from dietary and metabolic acids which are eliminated through the four channels of elimination or buffered by the ten alkalizing buffering mechanisms to maintain the delicate blood plasma, interstitial and intracellular pH at a healthy 7.365.

Dr. Kim Ben states: When people encourage you to “alkalize your blood,” most of them mean that you should eat plenty of foods that have an alkaline-forming effect on your system. The reason for making this suggestion is that the vast majority of highly processed foods – like white flour products and white sugar – have an acid-forming effect on your system, and if you spend years eating a poor diet that is mainly acid-forming, you will overwork some of the buffering systems mentioned above to a point where you could create undesirable changes in your health.

Dr. Robert O. Young states; Everything you eat, everything you drink, everything you breath, everything you think and everything you do affects the blood and interstitial fluids in an acidic way to a lesser or greater degree. That is why we age. We do not get old we mold from years of acidic lifestyle and dietary choices. The key to a healthy life or a life of sickness and disease and then eventual death is in the blood! Especially the blood plasma.

Dr. Kim Ben states: For example, your phosphate buffer system uses different phosphate ions in your body to neutralize strong acids and bases. About 85% of the phosphate ions that are used in your phosphate buffer system comes from calcium phosphate salts, which are structural components of your bones and teeth. If your body fluids are regularly exposed to large quantities of acid-forming foods and liquids, your body will draw upon its calcium phosphate reserves to supply your phosphate buffer system to neutralize the acid-forming effects of your diet. Over time, this may lead to structural weakness in your bones and teeth.

Dr. Robert O. Young states: Dr Kim Ben has described the cause of bone loss correctly. It is important to remember that the activation of the pHosphate buffering system does not happen when you are on an alkalizing lifestyle and diet and hyper-perfusing the blood and interstitial fluids of the colloidal connective tissues with alkalinity.  The alkaline lifestyle and diet is outlined in my book, The pH Miracle Revised and Updated.

Drawing on your calcium phosphate reserves at a high rate can also increase the amount of calcium that is eliminated via your genito-urinary system, which is why a predominantly acid-forming diet can increase your risk of developing calcium-rich kidney stones.

Dr. Ken Ben states: This is just one example of how your buffering systems can be overtaxed to a point where you experience negative health consequences. Since your buffering systems have to work all the time anyway to neutralize the acids that are formed from everyday metabolic activities, it’s in your best interest to follow a diet that doesn’t create unnecessary work for your buffering systems.

Dr. Robert O. Young states: The protocol that will NOT unnecessarily activate the alkaline buffering systems of the body is outlined in the pH Miracle Revised and Updated by Dr. Robert O. Young.

Dr. Kim Ben states: Generally speaking, most vegetables and fruit have an alkaline-forming effect on your body fluids.

Dr. Robert O. Young states: Generally, all green fruit and vegetables are the ONLY alkalizing foods for the blood and interstitial fluids of the colloidal connective tissues and are critical in building healthy blood and then healthy body cells.

Dr. Kim Ben states: Most grains, animal foods, and highly processed foods have an acid-forming effect on your body fluids.

Dr. Robert O. Young states; All grains, animal foods, dairy products, fermented foods, algae, probiotics, enzymes, high sugar fruit, high sugar vegetables, vinegar, corn, nuts, mushrooms, alcohol, carbonate drinks, sport drinks and tobacco products are acidic to the blood and interstitial fluids of the colloidal connective tissues of the schade (the largest organ of the body) and will activate the alkaline buffering systems.

Dr. Kim Ben states: Your health is best served by a good mix of nutrient-dense, alkaline andacid-forming foods; ideally, you want to eat more alkaline-forming foods than acid-forming foods to have the net acid and alkaline-forming effects of your diet match the slightly alkaline pH of your blood.

Dr. Robert O. Young states: The only way to achieve extraordinary health and fitness is with the pH Miracle Lifestyle and Diet as outlined in The pH Miracle Revised and Updated book.

Dr. Kim Ben states: The following lists indicate which common foods have an alkaline-forming effect on your body fluids, and which ones result in acid ash formation when they are digested and assimilated into your system.

Please note that these lists of acid and alkaline-forming foods are not comprehensive, nor are they meant to be.

If you’re eating mainly grains, flour products, animal foods, and washing these foods down with coffee, soda, and milk, you will almost certainly improve your health by replacing some of your food and beverage choices with fresh vegetables and fruits.

Dr. Robert O. Young states: The four alkalizing food groups are chlorophyll from green fruit and green vegetables, mono and polyunsaturated oils, alkalizing water and finally alkalizing mineral salts. I call this the COWS Plan as outlined in The pH Miracle Revised and Updated book.

Dr. Kim Ben states: The primary purpose of this article is to offer information that explains why I believe that you don’t need to take one or more nutritional supplements or “alkalized water” for the sole purpose of alkalizing your body. Your body is already designed to keep the pH of your body fluids in a tight, slightly alkaline range.

Dr. Robert O. Young states: Your body is alkaline by design but acidic by function and that is why you would be wise to follow an alkaline lifestyle and diet to prevent ALL sickness and disease and remain strong, healthy and fit. Drinking alkaline water is essential to maintaining the healthy alkaline state of ALL your body fluids!!!!!!

Dr. Kim Ben states: The ideal scenario is to make fresh vegetables and fruits the centerpieces of your diet, and to eat small amounts of any other nutrient-dense foods that your appetite calls for and that experience shows your body can tolerate.

Dr. Robert O. Young states: The ideal scenario is to make fresh organic electron-rich green alkalizing fruit and vegetables the centerpiece of your diet with liberal amounts of alkalizing polyunsaturated oils, alkalizing water at a pH of 9.5 and finally alkalizing mineral salts of sodium, potassium, magnesium and calcium.

Dr. Kim Ben states: I hope these thoughts bring some clarity to this often misunderstood health topic.

Dr. Robert O. Young states: I hope these scientific truths brings some clarity to Dr. Kim Ben and others that are confused about the biochemistry, bioenergetics and the importance of alkalizing the blood and interstitial fluids of the colloidal connective  tissues of the schade (the largest organ of the human body) with an alkaline lifestyle and diet as outlined in my book, The pH Miracle, revised and updated.

For additional information read The pH Miracle Revised and Updated by Dr. Robert O. Young .

 

%d bloggers like this: