Using Alkalizing Herbs in the Prevention, Treatment and Reversal of Any Cancerous Condition

Dr. Robert O. Young MSc., DSc., Ph.D, ND

“The cure for cancer is found in its prevention NOT in its treatment”  Dr. Robert O. Young

Abstract

An anti-cancer lifestyle and diet is an important strategy you can use to reduce your risk for ANY cancerous condition. The American Cancer Society recommends, for example, that you eat at least five servings of fruit and vegetables daily and eat the right amount of (alkaline) food to stay at a healthy weight. In addition, researchers are finding that certain plant foods or herbs may be particularly useful in protecting and reversing many cancerous condition. The following article covers several of these medicinal herbs and their benefits in the prevention and treatment of brain cancer, lung cancer, breast cancer,  blood cancers,  prostate cancer, oral cancer, liver cancer thyroid cancer, kidney cancer, bowel cancer, stomach cancer, skin cancer and pancreatic cancer.

[Key words; cancer, chemotherapy, herbs, spices, natural cancer treatments, garlic, turmeric, ginger, cayenne, alkalizing, liver disease, oral cancer, prostate cancer, blood cancer, breast cancer, thyroid cancer, stomach cancer, skin cancer, pancreatic cancer, lung cancer, bowel cancer]

Introduction

Make room in your diet for the following foods and drinks to prevent cancer.  Why?  Because an ounce of prevention is worth more than a pound of cure.  The following are eleven herbs or spices that have been shown to be effective in the prevention, treatment and reversal of many cancerous conditions.

Garlic

[Figure 1: Cloves of garlic]

Several large studies have found that those who eat more garlic are less likely to develop various kinds of cancer, especially in digestive organs such as the esophagus, stomach, and colon. Ingredients in the pungent bulbs may keep cancer-causing substances in your body from working, or they may keep cancer cells from multiplying. I recommend a clove a day may be helpful.[1=22 ]

Cayenne Pepper

Most people know cayenne pepper for its spice. But it is actually an extraordinarily strong antioxidant and vaso-dialator. Studies have shown that by consuming cayenne pepper is highly alkaline and a powerful buffer of dietary and metabolic acids that cause cells to become cancerous. If you consume it regularly you can neutralize the acids that cause body cells to become cancerous.[23-29 ]

{Figure 2: Cyenne pepper]

Milk Thistle

Milk thistle is a crucial plant when it comes to liver health and cancer prevention. Milk thistle and the seeds from the plant can be used to eliminate acidic toxins that can bind to the liver, causing damage to the liver setting the stage for a cancerous condition. It protects the alkaline interstitial fluids that surround every body cell protecting them and indirectly preventing the formation of tumors, calcifications and/or cysts which make milk thistle a powerful antioxidant in the chelation of dietary and/or metabolic acids that cause cancer.[30-64 ]

[Figure 3: Milk Thistle]

Turmeric

 [Figure 4: Turmeric root and spice]

This orange-colored spice, a staple in Indian curries, contains an ingredient called curcumin (not the same as cumin) that might be useful in reducing cancer risk. According to the American Cancer Society, curcumin can inhibit some kinds of cancer cells in laboratory studies and slow the spread of cancer or shrink tumors in some animals. Turmeric is easy to find in grocery stores, and you can use it in a variety of recipes.[65-130 ]

Bloodroot

Bloodroot is actually used in a medicine for treating cancer named Black Salve. You can use bloodroot on its own, because it has been shown in tests to be effective in shrinking of tumors.[131-159]

[Figure 5: Bloodroot plant and flower]

Feverfew

Feverfew was used in a study at a university in New York. The study found that it was great at killing off leukemia cells, even better than the actual cancer medication.[160-191]

[Figure 6: Feverfew plant and flower]

Wheatgrass

Consuming one tiny glass of wheatgrass a day either orally or even-better rectally has shown to dramatically increase the health of cancer patients and non-cancer patients alike. It is particularly useful for people who are suffering from the side effects of chemotherapy. It will help purify the blood from dietary and/or metabolic acids, improve blood and lymph circulation, increase the oxygen levels in the microenvironments, and help the body repair and continue to reduce acids loads in the extracellular fluids, interstitial fluids and intracellular fluids to prevent and/or reverse and spoiling of the body cells.[192-204]

[Figure 7: Wheatgrass}

Ruscus Aculeatus

This herb is always known as Butchers Broom and it is great at fighting cancer due to its active ingredient, ruscogenins. The active ingredient has been proven to shrink tumors and increase the cancer fighting cells in the body.[205-221 ]

[Figure 8: Ruscus Aculeatus or Butchers Broom]

Sheep’s Sorrell

Sheep’s Sorrell can be used in people who are suffering the harmful effects of cancer medications. It helps the tissues rebuild and get back to the condition that they were in before the cancer and medication to use it was introduced. Some have suggested that it can be used to ward off cancer cells and keep them from growing.[222-224]

[Figure 9: Sheep’s Sorrel}

Astragalus

This herb is grown in China and has been proven to help with cancer on a couple of different levels. First it boosts your body’s immune system, which in turn helps it identify cancer cells. A study showed that cancer patients who took this herb survived twice as long.[225-250 ]

[Figure 10: Astragalus}

Ginger


[Figure 11: Ginger root]

A new study reveals ginger contains a pungent compound that could be up to 10,000 times more effective than conventional chemotherapy in targeting the cancer stem cells at the root of cancer malignancy. [251]

[Figure 12: Research Shows The Efficacy of Ginger Root as a non-toxic form of chemotherapy]

The authors of the study further affirm these points:

“Cancer stem cells pose serious obstacle to cancer therapy as they can be responsible for poor prognosis and tumour relapse. To add into the misery, very few chemotherapeutic compounds show promise to kill these cells. Several researchers have shown that cancer stem cells are resistant to paclitaxel, doxorubicin, 5-fluorouracil, and platinum drugs [8, 16]. CSCs are thus an almost unreachable population in tumours for chemotherapy. Therefore any compound, that shows promise towards cancer stem cells, is a highly desirable step towards cancer treatment and should be followed up for further development.”

The researchers identified a variety of ways by which 6-shagoal targets breast cancer:

  • It reduces the expression of CD44/CD24 cancer stem cell surface markers in breast cancer spheroids (3-dimensional cultures of cells modeling stem cell like cancer)
  • It significantly affects the cell cycle, resulting in increased cancer cell death
  • It induces programmed cell death primarily through the induction of autophagy, with apoptosis a secondary inducer
  • It inhibits breast cancer spheroid formation by altering Notch signaling pathway through γ-secretase inhibition.
  • It exhibits cytotoxicity (cell killing properties) against monolayer (1-dimensional cancer model) and spheroid cells (3-dimensional cancer model)

It was in evaluating the last mode of 6-shagoal’s chemotherapeutic activity and comparing it to the activity of the conventional chemotherapeutic agent taxol that the researchers discovered an astounding difference. Whereas taxol exhibited clear cytotoxicity in the one-dimensional (flat) monolayer experimental model, it had virtually no effect on the spheroid model, which is a more “real world” model reflecting the 3-dimensionality of tumors and their stem cell subpopulations. Amazingly, this held true even when the concentration of taxol was increased by four orders of magnitude:

 “In contrast [to 6-shagoal], taxol, even though was highly active in monolayer cells, did not show activity against the spheroids even at 10000 fold higher concentration compared to 6-shogoal.”

This is a highly significant finding, as it affirms a common theme in cancer research that acknowledges the primarily role of cancer stem cells: namely, while conventional techniques like surgery, radiation, and chemotherapy are effective at reducing a tumor’s size, sometimes to the point where it is “debulked,” burned,” or “poisoned” out of the body even below the threshold of re-detection, the appearance of “winning the battle” often comes at a steep price, as ultimately the cancer stem cell population regrows the tumors, now with increased vengeance and metastastic invasiveness, resulting in the cancer “winning the war.”

The monolayer model, which does not account for the complex immunity of actual cancer stem-cell based tumors against chemoagents like taxol, represents the old preclinical model of testing cancer treatments. The spheroid model, on the other hand, clearly shows that even 10,000 times higher concentrations of taxol are not capable of beating this ginger component at selectively targeting the root cause of the tumor malignancy.

In their concluding remarks, the authors point out a hugely important distinction between natural anti-cancer agents and conventional ones that have only been introduced in the past half century or so, namely, “Dietary compounds are welcome options for human diseases due to their time-tested acceptability by human bodies.”  

Unlike modern synthetically produced and patented chemicals, ginger, curcumin, garlic, and hundreds of other compounds naturally found in the human diet, have been “time-tested” as acceptable to the human body in the largest and longest running “clinical trials” known: the tens of thousands of years of direct human experience, spanning thousands of different cultures from around the world, that constitute human prehistory. These experientially-based “trials” are validated not by RCTs, or a peer-reviewed publication process, but by the fact that we all made it through this incalculably vast span of time to be alive here today. Consider also that if our ancestors made the wrong dietary choice by simply mistaking an edible berry for a poisonous one, the consequences could be deadly. This places even greater emphasis on how the “time testing” of dietary compounds was not an academic but a life-death affair, and by implication, how the information contained within various cultural traditions as “recipes” passed down from generation to generation are “epigenetic inheritance systems” no less important to our health and optimal gene expression as the DNA in our own bodies.

Ultimately, this new study adds to a growing body of research indicating that cancer stem cell targeting approaches using natural substances present in the human diet for thousands of years are far superior than chemotherapy and radiation, both of which actually increase the relative populations of cancer stem cells versus non-tumorigenic ones.[251]

Cannabis

[Figure 11: Cannabis plant with buds]

Cannabis has been making a lot of noise lately. Multiple states across the United States and countries around the world have successfully legalized medical Marijuana, and the Uruguay parliament recently voted to create the world’s first legal marijuana market.[252-256] This is good news as the health benefits of Cannabis are vast, with multiple medical and scientific studies that confirm them. On the other hand, arguments against the use of marijuana is usually published in Psychiatric journals, which show no scientific evidence that Cannabis is harmful to human health. All psychological evaluations from the intake of cannabis are largely based on assumptions, suggestions and observations (257). When we look at the actual science behind Cannabis, the health benefits can be overwhelming. So what does one who opposes the use of cannabis base their belief on? Nothing, not scientific evidence anyways. The negative stigmatism attached to marijuana is due to it’s supposed psychotropic effects, yet again, there is no scientific evidence to show that marijuana has any psychotropic effects. Nonetheless, cannabis has recently been the focus of medical research and considered as a potential therapeutic treatment and cure for cancer.Cannabis is a great example of how the human mind is programmed and conditioned to believe something. Growing up, we are told drugs are bad, which is true, however not all substances that have been labelled as “drugs” by the government are harmful. Multiple substances are labelled as a “drug” in order to protect corporate interests. One example is the automobile and energy industry, a car made from hemp is stronger than steel, and can be fuelled from hemp alone. Henry Ford demonstrated this many years ago. Hemp actually has over 50,000 uses![258]Let’s take a look at the science behind Cannabis and Cancer. Although Cannabis has been proven to be effective for a large range of ailments, this article will focus mainly on it’s effectiveness in the treatment of cancer. Cannabinoids may very well be one of the best disease and cancer fighting treatments out there. Cannabinoids refer to any of a group of related compounds that include cannabinol and the active constituents of cannabis. They activate cannabinoid receptors in the body. The body itself produces compounds called endocannabinoids and they play a role in many processes within the body that help to create a healthy environment. Cannabinoids also play a role in immune system generation and re-generation. The body regenerates best when it’s saturated with Phyto-Cannabinoids. Cannabinoids can also be found in Cannabis. It is important to note that the cannabinoids are plentiful in both hemp and cannabis. One of the main differentiations between hemp and cannabis is simply that hemp only contains 0.3% THC while cannabis is 0.4% THC or higher. (Technically they are both strains of Cannabis Sativa.)  Cannabinoids have been proven to reduce cancer cells as they have a great impact on the rebuilding of the immune system. While not every strain of cannabis has the same effect, more and more patients are seeing success in cancer reduction in a short period of time by using cannabis.While taking a look at these studies, keep in mind that cannabis can be much more effective for medicinal purposes when we eat it rather than smoking it. Below are 20 medical studies that prove cannabis can be an effective treatment and possible cure for cancer.[ [259-288] Please keep in mind that this is a very short list of studies that support the use of medicinal marijuana. Please feel free to further your research, hopefully this is a good starting point.

Brain Cancer

A study published in the British Journal of Cancerconducted by the Department of Biochemistry and Molecular Biology at Complutense University in Madrid, this study determined that Tetrahydrocannabinol (THC) and other cannabinoids inhibit tumour growth. They were responsible for the first clinical study aimed at assessing cannabinoid antitumoral action. Cannabinoid delivery was safe and was achieved with zero psychoactive effects. THC was found to decrease tumour cells in two out of the nine patients.[289]A study published in The Journal of Neuroscience examined the biochemical events in both acute neuronal damage and in slowly progressive, neurodegenerative diseases. They conducted a magnetic resonance imaging study that looked at THC (the main active compound in marijuana) and found that it reduced neuronal injury in rats. The results of this study provide evidence that the cannabinoid system can serve to protect the brain against neurodegeneration.[290]A study published in The Journal of Pharmacology And Experimental Therapeutics already acknowledged the fact that cannabinoids have been shown to possess antitumor properties. This study examined the effect of cannabidiol (CBD, non psychoactive cannabinoid compound) on human glioma cell lines. The addition of cannabidiol led to a dramatic drop in the viability of glioma cells. Glioma is the word used to describe brain tumour.  The study concluded that cannabidiol was able to produce a significant antitumor activity.[291]A study published in the journal Molecular Cancer Therapeutics outlines how brain tumours are highly resistant to current anticancer treatments, which makes it crucial to find new therapeutic strategies aimed at improving the poor prognosis of patients suffering from this disease. This study also demonstrated the reversal of tumour activity in Glioblastoma multiforme.[292]

Breast Cancer

A study published in the US National Library of Medicine, conducted by the California Pacific Medical Centre determined that cannabidiol (CBD) inhibits human breast cancer cell proliferation and invasion. They also demonstrated that CBD significantly reduces tumour mass.[293]A study published in The Journal of Pharmacology and Experimental Therapeutics determined that THC as well as cannabidiol dramatically reduced breast cancer cell growth. They confirmed the potency and effectiveness of these compounds.[294]A study published in the Journal Molecular Cancer showed that THC reduced tumour growth and tumour numbers. They determined that cannabinoids inhibit cancer cell proliferation, induce cancer cell apoptosis and impair tumour angiogenesis (all good things). This study provides strong evidence for the use of cannabinoid based therapies for the management of breast cancer.[295]A study published in the Proceedings of the National Academy of Sciences of the United States of America (PNAS) determined that cannabinoids inhibit human breast cancer cell proliferation.[296]

Lung Cancer

A study published in the journal Oncogeneby Harvard Medical Schools Experimental Medicine Department determined that THC inhibits epithelial growth factor induced lung cancer cell migration and more. They go on to state that THC should be explored as novel therapeutic molecules in controlling the growth and metastasis of certain lung cancers.[297 ]A study published by the US National Library of Medicine by the Institute of Toxicology and Pharmacology, from the Department of General Surgery in Germany determined that cannabinoids inhibit cancer cell invasion. Effects were confirmed in primary tumour cells from a lung cancer patient.  Overall, data indicated that cannabinoids decrease cancer cell invasiveness.[298 ]A study published by the US National Library of Medicine, conducted by Harvard Medical School investigated the role of cannabinoid receptors in lung cancer cells. They determined its effectiveness and suggested that it should be used for treatment against lung cancer cells.[299 ]

Prostate Cancer

A study published in the US National Library of Medicine illustrates a decrease in prostatic cancer cells by acting through cannabinoid receptors.[300]A study published in the US National Library of Medicine outlined multiple studies proving the effectiveness of cannabis on prostate cancer.[301]Another study published by the US National Library of Medicine determined that clinical testing of CBD against prostate carcinoma is a must. That cannabinoid receptor activation induces prostate carcinoma cell apoptosis. They determined that cannabidiol significantly inhibited cell viability.[302]

Blood Cancer

A study published in the journal Molecular Pharmacology recently showed that cannabinoids induce growth inhibition and apoptosis in matle cell lymphoma. The study was supported by grants from the Swedish Cancer Society, The Swedish Research Council and the Cancer Society in Stockholm.[303]A study published in the International Journal of Cancer also determined and illustrated that cannabinoids exert antiproliferative and proapoptotic effects in various types of cancer and in mantle cell lymphoma.[304]A study published in the US National Library of Medicine conducted by the Department of Pharmacology and Toxicology by Virginia Commonwealth University determined that cannabinoids induce apoptosis in leukemia cells.[305]

Oral Cancer

A study published by the US National Library of Medicine results show cannabinoids are potent inhibitors of cellular respiration and are toxic to highly malignant oral Tumours. [306]

Liver Cancer

A study published by the US National Library of Medicine determined that that THC reduces the viability of human HCC cell lines (Human hepatocellular liver carcinoma cell line) and reduced the growth.[307]

Pancreatic Cancer

A study published in The American Journal of Cancer determined that cannabinoid receptors are expressed in human pancreatic tumor cell lines and tumour biopsies at much higher levels than in normal pancreatic tissue. Results showed that cannabinoid administration induced apoptosis. They also reduced the growth of tumour cells, and inhibited the spreading of pancreatic tumour cells.[308]

Conclusion

According to a 2004 report by Morgan, Ward, and Barton: “The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. … survival in adults was estimated to be 2.3% in Australia and 2.1% in the USA.”Jun 16, 2014[309]

Medical oncologists are a long way from using medicinal herbs as an alternative or primary treatment for cancer.  The research is significant and shows that the medicinal herbs discussed in this article are extraordinary plants and have shown excellent results in the prevention, treatment and reversal of many cancerous conditions.

References:

  1. Milner JA. Garlic: Its anticarcinogenic and antitumorigenic properties. Nutrition Reviews1996; 54:S82–S86.
  2. Ross SA, Finley JW, Milner JA. Allyl sulfur compounds from garlic modulate aberrant crypt formation. Journal of Nutrition 2006; 136(3 Suppl):852S–854S.
  3. Amagase H, Petesch BL, Matsuura H, Kasuga S, Itakura Y. Intake of garlic and its bioactive components. Journal of Nutrition 2001; 131(3s):955S–962S.
  4. Amagase H. Clarifying the real bioactive constituents of garlic. Journal of Nutrition 2006; 136(3 Suppl):716S–725S.
  5. Fleischauer AT, Arab L. Garlic and cancer: A critical review of the epidemiologic literature. Journal of Nutrition 2001; 131(3s):1032S–1040S.
  6. Gonzalez CA, Pera G, Agudo A, et al. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC-EURGAST). International Journal of Cancer 2006; 118(10): 2559–2566.
  7. Steinmetz KA, Kushi LH, Bostick RM, Folsom AR, Potter JD. Vegetables, fruit, and colon cancer in the Iowa Women’s Health Study. American Journal of Epidemiology 1994; 139(1):1–15.
  8. Gao CM, Takezaki T, Ding JH, Li MS, Tajima K. Protective effect of allium vegetables against both esophageal and stomach cancer: A simultaneous case-referent study of a high-epidemic area in Jiangsu Province, China. Japanese Journal of Cancer Research1999; 90(6):614–621.
  9. Setiawan VW, Yu GP, Lu QY, et al. Allium vegetables and stomach cancer risk in China. Asian Pacific Journal of Cancer Prevention 2005; 6(3):387–395.
  10. Hsing AW, Chokkalingam AP, Gao YT, et al. Allium vegetables and risk of prostate cancer: A population-based study. Journal of the National Cancer Institute 2002; 94(21):1648–1651.
  11. Chan JM, Wang F, Holly EA. Vegetable and fruit intake and pancreatic cancer in a population-based case-control study in the San Francisco bay area. Cancer Epidemiology Biomarkers & Prevention 2005; 14(9):2093–2097.
  12. Challier B, Perarnau JM, Viel JF. Garlic, onion and cereal fibre as protective factors for breast cancer: A French case-control study. European Journal of Epidemiology 1998; 14(8):737–747.
  13. Li H, Li HQ, Wang Y, et al. An intervention study to prevent gastric cancer by micro-selenium and large dose of allitridum. Chinese Medical Journal (English) 2004; 117(8):1155–1160.
  14. You WC, Brown LM, Zhang L, et al. Randomized double-blind factorial trial of three treatments to reduce the prevalence of precancerous gastric lesions. Journal of the National Cancer Institute 2006; 98(14):974–983.
  15. Tanaka S, Haruma K, Kunihiro M, et al. Effects of aged garlic extract (AGE) on colorectal adenomas: A double-blinded study. Hiroshima Journal of Medical Sciences 2004; 53(3–4):39–45.
  16. Tilli CM, Stavast-Kooy AJ, Vuerstaek JD, et al. The garlic-derived organosulfur component ajoene decreases basal cell carcinoma tumor size by inducing apoptosis. Archives of Dermatological Research 2003; 295(3):117–123.
  17. Ruddock PS, Liao M, Foster BC, et al. Garlic natural health products exhibit variable constituent levels and antimicrobial activity against Neisseria gonorrhoeae, Staphylococcus aureus and Enterococcus faecalis. Phytotherapy Research 2005; 19(4):327–334.
  18. Shenoy NR, Choughuley AS. Inhibitory effect of diet related sulphydryl compounds on the formation of carcinogenic nitrosamines. Cancer Letters 1992; 65(3):227–232.
  19. Milner JA. Mechanisms by which garlic and allyl sulfur compounds suppress carcinogen bioactivation. Garlic and carcinogenesis. Advances in Experimental Medicine and Biology2001; 492:69–81.
  20. L’vova GN, Zasukhina GD. Modification of repair DNA synthesis in mutagen-treated human fibroblasts during adaptive response and the antimutagenic effect of garlic extract. Genetika 2002; 38(3):306–309.
  21. Boon H, Wong J. Botanical medicine and cancer: A review of the safety and efficacy. Expert Opinion on Pharmacotherapy 2004; 5(12):2485–2501.
  22. Piscitelli SC, Burstein AH, Welden N, Gallicano KD, Falloon J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clinical Infectious Diseases 2002; 34(2):234–238.Athanasiou A., et al. Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death. Biochem Biophys Res Commun 2007 Mar 2; 354(1): 50-55.
  23. Athanasiou A., et al. Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: how vanilloids cause non-vanilloid receptor mediated cell death.  2007 Mar 2; 354(1): 50-55.
  24. Christensen, Jon. (December 12, 2005). Retrieved from The New York Times. Scientist at work: John Reed; running hot in pursuit of cancer treatment).
  25. Hu, Janny.  (October 12, 2004). Lakers Suite Tomjanovich to a T. San Francisco Chronicle on The Web. Retrieved from http://www.sfgate.com/sports/article/Lakers-suit-coach-Tomjanovich-to-a-T-2641695.php.
  26. Mori, Akio, et al. (March 15, 2006). Capsaicin, A Component of Red Peppers, Inhibits The Growth of Androgen-Independent, p53 Mutant Prostate Cancer Cells. American Association of Cancer Research.
  27. Samid, Dvorit. (1997). Compositions and methods for treating and preventing pathologies including cancer. The USA Dept. of HHS; pg. 56.
  28. Sanchez AM et al. Apoptosis induced by capsaicin in prostate PC-3 cells involves ceramide accumulation, neutral sphingomyelinase, and JNK activation. Apoptosis 2007; 12(11): 2013-24.
  29. Thoennissen NH, O’Kelly J, Lu D, et al. Capsaicin causes cell-cycle arrest and apoptosis in ER-positive and -negative breast cancer cells by modulating the EGFR/HER-2 pathway. Oncogene. 2010, Jan 14;29(2):285-96.  
  30. PDR® for Herbal Medicines™. 2nd ed. Montvale, NJ: Medical Economics, 2000.
  31. Lee DY, Liu Y: Molecular structure and stereochemistry of silybin A, silybin B, isosilybin A, and isosilybin B, Isolated from Silybum marianum (milk thistle). J Nat Prod 66 (9): 1171-4, 2003. [PUBMED Abstract]
  32. Napolitano JG, Lankin DC, Graf TN, et al.: HiFSA fingerprinting applied to isomers with near-identical NMR spectra: the silybin/isosilybin case. J Org Chem 78 (7): 2827-39, 2013. [PUBMED Abstract]
  33. Hruby K, Csomos G, Fuhrmann M, et al.: Chemotherapy of Amanita phalloides poisoning with intravenous silibinin. Hum Toxicol 2 (2): 183-95, 1983. [PUBMED Abstract]
  34. Wagner H, Hörhammer L, Münster R: [On the chemistry of silymarin (silybin), the active principle of the fruits from Silybum marianum (L.) Gaertn. (Carduus marianus L.)] Arzneimittelforschung 18 (6): 688-96, 1968. [PUBMED Abstract]
  35. Campos R, Garrido A, Guerra R, et al.: Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 55 (5): 417-9, 1989. [PUBMED Abstract]
  36. Farghali H, Kameniková L, Hynie S, et al.: Silymarin effects on intracellular calcuim and cytotoxicity: a study in perfused rat hepatocytes after oxidative stress injury. Pharmacol Res 41 (2): 231-7, 2000. [PUBMED Abstract]
  37. Lettéron P, Labbe G, Degott C, et al.: Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Evidence that silymarin acts both as an inhibitor of metabolic activation and as a chain-breaking antioxidant. Biochem Pharmacol 39 (12): 2027-34, 1990. [PUBMED Abstract]
  38. Zhao J, Agarwal R: Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis 20 (11): 2101-8, 1999. [PUBMED Abstract]
  39. Valenzuela A, Guerra R, Videla LA: Antioxidant properties of the flavonoids silybin and (+)-cyanidanol-3: comparison with butylated hydroxyanisole and butylated hydroxytoluene. Planta Med (6): 438-40, 1986. [PUBMED Abstract]
  40. Valenzuela A, Guerra R, Garrido A: Silybin dihemisuccinate protects rat erythrocytes against phenylhydrazine-induced lipid peroxidation and hemolysis. Planta Med 53 (5): 402-5, 1987. [PUBMED Abstract]
  41. Valenzuela A, Aspillaga M, Vial S, et al.: Selectivity of silymarin on the increase of the glutathione content in different tissues of the rat. Planta Med 55 (5): 420-2, 1989. [PUBMED Abstract]
  42. Mira ML, Azevedo MS, Manso C: The neutralization of hydroxyl radical by silibin, sorbinil and bendazac. Free Radic Res Commun 4 (2): 125-9, 1987. [PUBMED Abstract]
  43. Mira L, Silva M, Manso CF: Scavenging of reactive oxygen species by silibinin dihemisuccinate. Biochem Pharmacol 48 (4): 753-9, 1994. [PUBMED Abstract]
  44. Koch HP, Löffler E: Influence of silymarin and some flavonoids on lipid peroxidation in human platelets. Methods Find Exp Clin Pharmacol 7 (1): 13-8, 1985. [PUBMED Abstract]
  45. Garrido A, Arancibia C, Campos R, et al.: Acetaminophen does not induce oxidative stress in isolated rat hepatocytes: its probable antioxidant effect is potentiated by the flavonoid silybin. Pharmacol Toxicol 69 (1): 9-12, 1991. [PUBMED Abstract]
  46. Bosisio E, Benelli C, Pirola O: Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes. Pharmacol Res 25 (2): 147-54, 1992 Feb-Mar. [PUBMED Abstract]
  47. Altorjay I, Dalmi L, Sári B, et al.: The effect of silibinin (Legalon) on the the free radical scavenger mechanisms of human erythrocytes in vitro. Acta Physiol Hung 80 (1-4): 375-80, 1992. [PUBMED Abstract]
  48. El-Shitany NA, Hegazy S, El-Desoky K: Evidences for antiosteoporotic and selective estrogen receptor modulator activity of silymarin compared with ethinylestradiol in ovariectomized rats. Phytomedicine 17 (2): 116-25, 2010. [PUBMED Abstract]
  49. Scambia G, De Vincenzo R, Ranelletti FO, et al.: Antiproliferative effect of silybin on gynaecological malignancies: synergism with cisplatin and doxorubicin. Eur J Cancer 32A (5): 877-82, 1996. [PUBMED Abstract]
  50. Bhatia N, Zhao J, Wolf DM, et al.: Inhibition of human carcinoma cell growth and DNA synthesis by silibinin, an active constituent of milk thistle: comparison with silymarin. Cancer Lett 147 (1-2): 77-84, 1999. [PUBMED Abstract]
  51. Zi X, Agarwal R: Silibinin decreases prostate-specific antigen with cell growth inhibition via G1 arrest, leading to differentiation of prostate carcinoma cells: implications for prostate cancer intervention. Proc Natl Acad Sci U S A 96 (13): 7490-5, 1999. [PUBMED Abstract]
  52. Duthie SJ, Johnson W, Dobson VL: The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells. Mutat Res 390 (1-2): 141-51, 1997. [PUBMED Abstract]
  53. Vailati A, Aristia L, Sozzé E, et al.: Randomized open study of the dose-effect relationship of a short course of IdB 1016 in patients with viral or alcoholic hepatitis. Fitoterapia 64 (3), 219-28, 1993.
  54. Salmi HA, Sarna S: Effect of silymarin on chemical, functional, and morphological alterations of the liver. A double-blind controlled study. Scand J Gastroenterol 17 (4): 517-21, 1982. [PUBMED Abstract]
  55. Parés A, Planas R, Torres M, et al.: Effects of silymarin in alcoholic patients with cirrhosis of the liver: results of a controlled, double-blind, randomized and multicenter trial. J Hepatol 28 (4): 615-21, 1998. [PUBMED Abstract]
  56. Moscarella S, Giusti A, Marra F, et al.: Therapeutic and antilipoperoxidant effects of silybin-phosphatidylcholine complex in chronic liver disease: preliminary results. Current Therapeutic Research 53 (1): 98-102.
  57. Marena C, Lampertico M: Preliminary clinical development of silipide: a new complex of silybin in toxic liver disorders. Planta Med 57 (Suppl 2): A124-5, 1991.
  58. Marcelli R, Bizzoni P, Conte D, et al.: Randomized controlled study of the efficacy and tolerability of a short course of IdB 1016 in the treatment of chronic persistent hepatitis. European Bulletin of Drug Research 1 (3): 131-5, 1992.
  59. Flisiak R, Prokopowicz D: Effect of misoprostol on the course of viral hepatitis B. Hepatogastroenterology 44 (17): 1419-25, 1997 Sep-Oct. [PUBMED Abstract]
  60. Ferenci P: [Therapy of chronic hepatitis C] Wien Med Wochenschr 150 (23-24): 481-5, 2000. [PUBMED Abstract]
  61. Buzzelli G, Moscarella S, Giusti A, et al.: Therapeutic effects of a new silybin complex in chronic active hepatitis (CAH). [Abstract] Hellenic Journal of Gastroenterology 5 (Suppl): A-151, 38, 1992.
  62. Albrecht M, Frerick H, Kuhn U, et al.: Therapy of toxic liver pathologies with Legalon®. Z Klin Med 47: 87-92, 1992.
  63. Rambaldi A, Jacobs BP, Gluud C: Milk thistle for alcoholic and/or hepatitis B or C virus liver diseases. Cochrane Database Syst Rev (4): CD003620, 2007. [PUBMED Abstract]
  64. Yang Z, Zhuang L, Lu Y, et al.: Effects and tolerance of silymarin (milk thistle) in chronic hepatitis C virus infection patients: a meta-analysis of randomized controlled trials. Biomed Res Int 2014: 941085, 2014. [PUBMED Abstract]
  65. Bachmeier BE, Mirisola V, Romeo F, et al. Reference profile correlation reveals estrogen-like trancriptional activity of Curcumin. Cell Physiol Biochem. 2010;26(3):471-482.
  66. Cemil B, Topuz K, Demircan MN, et al. Curcumin improves early functional results after experimental spinal cord injury. Acta Neurochir (Wien). Sep 2010;152(9):1583-1590; discussion 1590.
  67. Seehofer D, Schirmeier A, Bengmark S, et al. Inhibitory effect of curcumin on early liver regeneration following partial hepatectomy in rats. J Surg Res. Aug 2009;155(2):195-200.
  68. Yun JM, Jialal I, Devaraj S. Epigenetic regulation of high glucose-induced proinflammatory cytokine production in monocytes by curcumin. J Nutr Biochem. May 2011;22(5):450-458.
  69. Jantan I, Bukhari SN, Lajis NH, et al. Effects of diarylpentanoid analogues of curcumin on chemiluminescence and chemotactic activities of phagocytes. J Pharm Pharmacol.Mar 2012;64(3):404-412.
  70. Chang KW, Hung PS, Lin IY, et al. Curcumin upregulates insulin-like growth factor binding protein-5 (IGFBP-5) and C/EBPalpha during oral cancer suppression. Int J Cancer. Jul 1 2010;127(1):9-20.
  71. Siwak DR, Shishodia S, Aggarwal BB, et al. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IkappaB kinase and nuclear factor kappaB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway.Cancer. Aug 15 2005;104(4):879-890.
  72. Uddin S, Hussain AR, Manogaran PS, et al. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene. Oct 27 2005;24(47):7022-7030.
  73. Kunnumakkara AB, Guha S, Krishnan S, et al. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor-kappaB-regulated gene products. Cancer Res. Apr 15 2007;67(8):3853-3861.
  74. Selvendiran K, Ahmed S, Dayton A, et al. HO-3867, a curcumin analog, sensitizes cisplatin-resistant ovarian carcinoma, leading to therapeutic synergy through STAT3 inhibition. Cancer Biol Ther. Nov 1 2011;12(9):837-845.
  75. Sreekanth CN, Bava SV, Sreekumar E, et al. Molecular evidences for the chemosensitizing efficacy of liposomal curcumin in paclitaxel chemotherapy in mouse models of cervical cancer. Oncogene. Jul 14 2011;30(28):3139-3152.
  76. Qiao Q, Jiang Y, Li G. Curcumin improves the antitumor effect of X-ray irradiation by blocking the NF-kappaB pathway: an in-vitro study of lymphoma. Anticancer Drugs.Jan 23 2012
  77. Kunnumakkara AB, Diagaradjane P, Guha S, et al. Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res. Apr 1 2008;14(7):2128-2136.
  78. Ng TP, Chiam PC, Lee T, et al. Curry consumption and cognitive function in the elderly.Am J Epidemiol. Nov 1 2006;164(9):898-906.
  79. Baum L, Lam CW, Cheung SK, et al. Six-month randomized, placebo-controlled, double-blind, pilot clinical trial of curcumin in patients with Alzheimer disease. J Clin Psychopharmacol. Feb 2008;28(1):110-113.
  80. Bundy R, Walker AF, Middleton RW, et al. Turmeric extract may improve irritable bowel syndrome symptomatology in otherwise healthy adults: a pilot study. J Altern Complement Med. Dec 2004;10(6):1015-1018.
  81. Hanai H, Iida T, Takeuchi K, et al. Curcumin maintenance therapy for ulcerative colitis: randomized, multicenter, double-blind, placebo-controlled trial. Clinical Gastroenterol Hepatol. Dec 2006;4(12):1502-1506.
  82. Kuptniratsaikul V, Dajpratham P, Taechaarpornkul W, et al. Efficacy and safety of Curcuma domestica extracts compared with ibuprofen in patients with knee osteoarthritis: a multicenter study. Clin Interv Aging. 2014 Mar 20;9:451-8.
  83. Pungcharoenkul K, Thongnopnua P. Effect of different curcuminoid supplement dosages on total in vivo antioxidant capacity and cholesterol levels of healthy human subjects. Phytother Res. Nov 2011;25(11):1721-1726
  84. Baum L, Cheung SK, Mok VC, et al. Curcumin effects on blood lipid profile in a 6-month human study. Pharmacol Res. Dec 2007;56(6):509-514.
  85. expression in patients with colorectal cancer by administration of curcumin. Cancer Invest. Mar 2011;29(3):208-213.
  86. Dhillon N, Aggarwal BB, Newman RA, et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. Jul 15 2008;14(14):4491-4499.
  87. Bayet-Robert M, Kwiatkowski F, Leheurteur M, et al. Phase I dose escalation trial of docetaxel plus curcumin in patients with advanced and metastatic breast cancer.Cancer Biol Ther. Jan 2010;9(1):8-14.
  88. Kanai M, Yoshimura K, Asada M, et al. A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol. Jul 2011;68(1):157-164.
  89. Epelbaum R, Schaffer M, Vizel B, et al. Curcumin and gemcitabine in patients with advanced pancreatic cancer. Nutr Cancer. 2010;62(8):1137-1141.
  90. Zhang W, Lim LY. Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro. Drug Metab Dispos. Jul 2008;36(7):1283-1290.
  91. Chen Y, Liu WH, Chen BL, et al. Plant polyphenol curcumin significantly affects CYP1A2 and CYP2A6 activity in healthy, male Chinese volunteers. Ann Pharmacother.Jun 2010;44(6):1038-1045.
  92. Somasundaram S, Edmund NA, Moore DT, et al. Dietary curcumin inhibits chemotherapy-induced apoptosis in models of human breast cancer. Cancer Res. Jul 1 2002;62(13):3868-3875.
  93. Leung AY, Foster S. Encyclopedia of Common Natural Ingredients Used in Food, Drugs and Cosmetics. 2nd ed. New York, NY: John Wiley & Sons; 1996.
  94. Morsy MA, Abdalla AM, Mahmoud AM, et al. Protective effects of curcumin, alpha-lipoic acid, and N-acetylcysteine against carbon tetrachloride-induced liver fibrosis in rats. J Physiol Biochem. Oct 11 2011.
  95. Bulku E, Stohs SJ, Cicero L, et al. Curcumin exposure modulates multiple pro-apoptotic and anti-apoptotic signaling pathways to antagonize acetaminophen-induced toxicity. Curr Neurovasc Res. Feb 1 2012;9(1):58-71.
  96. Alexandrow MG, Song LJ, Altiok S, et al. Curcumin: a novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev. Dec 7 2011.
  97. Lin SS, Lai KC, Hsu SC, et al. Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and -9 and Vascular Endothelial Growth Factor (VEGF). Cancer Lett. Nov 28 2009;285(2):127-133.
  98. Chen QY, Lu GH, Wu YQ, et al. Curcumin induces mitochondria pathway mediated cell apoptosis in A549 lung adenocarcinoma cells. Oncol Rep. May 2010;23(5):1285-1292.
  99. Wu SH, Hang LW, Yang JS, et al. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade- and mitochondria-dependent pathways. Anticancer Res. Jun 2010;30(6):2125-2133.
  100. de H, Tokiwa S, Sakamaki K, et al. Combined inhibitory effects of soy isoflavones and curcumin on the production of prostate-specific antigen. Prostate. Jul 1 2010;70(10):1127-1133.
  101. Wong TF, Takeda T, Li B, et al. Curcumin disrupts uterine leiomyosarcoma cells through AKT-mTOR pathway inhibition. Gynecol Oncol. Jul 2011;122(1):141-148
  102. Bartik L, Whitfield GK, Kaczmarska M, et al. Curcumin: a novel nutritionally derived ligand of the vitamin D receptor with implications for colon cancer chemoprevention.J Nutr Biochem. Dec 2010;21(12):1153-1161.
  103. Watson JL, Hill R, Lee PW, et al. Curcumin induces apoptosis in HCT-116 human colon cancer cells in a p21-independent manner. Exp Mol Pathol. Jun 2008;84(3):230-233.
  104. Yang KY, Lin LC, Tseng TY, et al. Oral bioavailability of curcumin in rat and the herbal analysis from Curcuma longa by LC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci. Jun 15 2007;853(1-2):183-189.
  105. Garcea G, Berry DP, Jones DJ, et al. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev. Jan 2005;14(1):120-125.
  106. Bishnoi M, Chopra K, Rongzhu L, et al. Protective effect of curcumin and its combination with piperine (bioavailability enhancer) against haloperidol-associated neurotoxicity: cellular and neurochemical evidence. Neurotox Res. Oct 2011;20(3):215-225.
  107. Tsai YM, Chien CF, Lin LC, et al. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood-brain barrier penetration. Int J Pharm. Sep 15 2011;416(1):331-338.
  108. Orr WS, Denbo JW, Saab KR, et al. Liposome-encapsulated curcumin suppresses neuroblastoma growth through nuclear factor-kappa B inhibition. Surgery. Jan 26 2012.
  109. Asai A, Miyazawa T. Occurrence of orally administered curcuminoid as glucuronide and glucuronide/sulfate conjugates in rat plasma. Life Sci. Oct 27 2000;67(23):2785-2793.
  110. Ravindranath V, Chandrasekhara N. Absorption and tissue distribution of curcumin in rats. Toxicology. 1980;16(3):259-265.
  111. Hou XL, Takahashi K, Tanaka K, et al. Curcuma drugs and curcumin regulate the expression and function of P-gp in Caco-2 cells in completely opposite ways. Int J Pharm. Jun 24 2008;358(1-2):224-229.
  112. Zhang W, Tan TM, Lim LY. Impact of curcumin-induced changes in P-glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos. Jan 2007;35(1):110-115.
  113. Appiah-Opong R, Commandeur JN, van Vugt-Lussenburg B, et al. Inhibition of human recombinant cytochrome P450s by curcumin and curcumin decomposition products.Toxicology. Jun 3 2007;235(1-2):83-91.
  114. Tang M, Larson-Meyer DE, Liebman M. Effect of cinnamon and turmeric on urinary oxalate excretion, plasma lipids, and plasma glucose in healthy subjects. Am J Clin Nutr. May 2008;87(5):1262-1267.
  115. Ulbricht CE, Basch, EM. Natual Standard Herb & Supplement Reference: Evidence-Based Clinical Reviews St. Louis, MO: Elsevier Mosby; 2005.
  116. Lamb SR, Wilkinson SM. Contact allergy to tetrahydrocurcumin. Contact Dermatitis.Apr 2003;48(4):227.
  117. Liddle M, Hull C, Liu C, et al. Contact urticaria from curcumin. Dermatitis. Dec 2006;17(4):196-197.
  118. Prakash P, Misra A, Surin WR, et al. Anti-platelet effects of Curcuma oil in experimental models of myocardial ischemia-reperfusion and thrombosis. Thromb Res. Feb 2011;127(2):111-118.
  119. Jantan I, Raweh SM, Sirat HM, et al. Inhibitory effect of compounds from Zingiberaceae species on human platelet aggregation. Phytomedicine. Apr 2008;15(4):306-309.
  120. Pavithra BH, Prakash N, Jayakumar K. Modification of pharmacokinetics of norfloxacin following oral administration of curcumin in rabbits. J Vet Sci. Dec 2009;10(4):293-297.
  121. Kudva AK, Manoj, MN, Swamy, BM, et al. Complexation of amphotericin B and curcumin with serum albumins: solubility and effect on erythrocyte membrane damage. J Exp Pharmacol. 2011;2011(3):1-6.
  122. Hudson SA, Ecroyd H, Kee TW, et al. The thioflavin T fluorescence assay for amyloid fibril detection can be biased by the presence of exogenous compounds. FEBS J. Oct 2009;276(20):5960-5972.
  123. Egashira K, Sasaki H, Higuchi S, Ieiri I. Food-drug interaction of tacrolimus with pomelo, ginger, and turmeric juice in rats. Drug Metab Pharmacokinet. 2012 Apr 25;27(2):242-7.
  124. Choi HA, Kim MR, Park KA, Hong J. Interaction of over-the-counter drugs with curcumin: influence on stability and bioactivities in intestinal cells. J Agric Food Chem.2012 Oct 24;60(42):10578-84.
  125. Akazawa N, Choi Y, Miyaki A, et al. Curcumin ingestion and exercise training improve vascular endothelial function in postmenopausal women. Nutr Res. 2012 Oct;32(10):795-9.
  126. Sanmukhani J, Satodia V, Trivedi J, et al. Efficacy and safety of curcumin in major depressive disorder: a randomized controlled trial. Phytother Res. 2014 Apr;28(4):579-85.
  127. Niu M, Wu S, Mao L, Yang Y. CRM1 is a cellular target of curcumin: new insights for the myriad of biological effects of an ancient spice. Traffic. 2013 Oct;14(10):1042-52.
  128. Palatty PL, Azmidah A, Rao S, et al. Topical application of a sandal wood oil and turmeric based cream prevents radiodermatitis in head and neck cancer patients undergoing external beam radiotherapy: a pilot study. Br J Radiol. 2014 Jun;87(1038):20130490.
  129. Thomas R, Williams M, Sharma H, Chaudry A, Bellamy P. A double-blind, placebo-controlled randomised trial evaluating the effect of a polyphenol-rich whole food supplement on PSA progression in men with prostate cancer—the U.K. NCRN Pomi-T study. Prostate Cancer Prostatic Dis. 2014 Jun;17(2):180-6.
  130. Daveluy A, Geniaux H, Thibaud L, et al. Probable interaction between an oral vitamin K antagonist and turmeric (Curcuma longa). Therapie. Nov-Dec 2014;69(6):519-520.
  131. Doctor Accused of Aiding Man Who Disfigured Cancer Patients. The Washinton Post.http://www.washingtonpost.com/wp-dyn/content/article/2005/08/13/AR2005081301016.html. Accessed August 17, 2015.
  132. Adhami VM, Aziz MH, Mukhtar H, et al. Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by sanguinarine in immortalized human HaCaT keratinocytes. Clin Cancer Res 2003;9(8):3176-82.
  133. Adhami VM, Aziz MH, Reagan-Shaw SR, et al. Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther 2004;3(8):933-40.
  134. Basini G, Santini SE, Bussolati S, et al. The plant alkaloid sanguinarine is a potential inhibitor of follicular angiogenesis. J Reprod Dev 2007;53(3):573-9.
  135. Basini G, Santini SE, Bussolati S, et al. Sanguinarine inhibits VEGF-induced Akt phosphorylation. Ann N Y Acad Sci 2007;1095:371-6.
  136. Chaturvedi MM, Kumar A, Darnay BG, et al. Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-kappaB activation, IkappaBalpha phosphorylation, and degradation. J Biol Chem 1997;272(48):30129-34.
  137. Ding Z, Tang SC, Weerasinghe P, et al. The alkaloid sanguinarine is effective against multidrug resistance in human cervical cells via bimodal cell death. Biochem Pharmacol 2002;63(8):1415-21.
  138. Dzink JL, Socransky SS. Comparative in vitro activity of sanguinarine against oral microbial isolates. Antimicrob Agents Chemother 1985;27(4):663-5.
  139. Eun JP, Koh GY. Suppression of angiogenesis by the plant alkaloid, sanguinarine.Biochem Biophys Res Commun 2004;317(2):618-24.
  140. Eversole LR, Eversole GM, Kopcik J. Sanguinaria-associated oral leukoplakia: comparison with other benign and dysplastic leukoplakic lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;89(4):455-64.
  141. Fetrow C. Professional’s handbook of complementary and alternative medicines 2nd ed. 2001, Springhouse, PA: Springhouse Corp.
  142. Hakim SA, Sanguinarine and hypothalamic glaucoma. J All India Ophthalmol Soc. 1962 Dec;10:83-102.
  143. Jeng JH, Wu HL, Lin BR, et al. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis2007;191(2):250-8.
  144. Mascarenhas AK, Allen CM, Loudon J. The association between Viadent use and oral leukoplakia. Epidemiology. 2001;12(6):741-3.
  145. McDaniel S, Goldman GD. Consequences of using escharotic agents as primary treatment for nonmelanoma skin cancer. Arch Dermatol 2002;138(12):1593-6.
  146. Munro IC, Delzell ES, Nestmann ER, et al. Viadent usage and oral leukoplakia: a spurious association. Regul Toxicol Pharmacol 1999;30(3):182-96.
  147. Nandi R, Maiti M. Binding of sanguinarine to deoxyribonucleic acids of differing base composition. Biochem Pharmacol 1985;34(3):321-4.
  148. Scheiner-Bobis G. Sanguinarine induces K+ outflow from yeast cells expressing mammalian sodium pumps. Naunyn Schmiedebergs Arch Pharmacol 2001;363(2):203-8.
  149. Seifen E, Adams RJ, Riemer RK. Sanguinarine: a positive inotropic alkaloid which inhibits cardiac Na+,K+-ATPase. Eur J Pharmacol 1979;60(4):373-7.
  150. Suchomelova J, Bochorakova H, Paulova H, et al. HPLC quantification of seven quaternary benzo[c]phenanthridine alkaloids in six species of the family Papaveraceae. J Pharm Biomed Anal 2007;44(1):283-7.
  151. Wolff J, Knipling L. Antimicrotubule properties of benzophenanthridine alkaloids.Biochemistry 1993;32(48):13334-9.
  152. Mazzio EA, Soliman KF. In vitro screening for the tumoricidal properties of international medicinal herbs. Phytother Res. 2009 Mar;23(3):385-98.
  153. Han MH, Yoo YH, Choi YH. Sanguinarine-induced apoptosis in human leukemia U937 cells via Bcl-2 downregulation and caspase-3 activation. Chemotherapy.2008;54(3):157-65.
  154. Saltzberg F, Barron G, Fenske N. Deforming self-treatment with herbal “black salve”.Dermatol Surg. 2009 Jul;35(7):1152-4.
  155. Sun M, Liu C, Nadiminty N, et al. Inhibition of Stat3 activation by sanguinarine suppresses prostate cancer cell growth and invasion. Prostate. 2011 May 2. doi: 10.1002/pros.21409.
  156. Cienki JJ, Zaret L. An Internet misadventure: bloodroot salve toxicity. J Altern Complement Med. 2010 Oct;16(10):1125-7.
  157. Lee JS, Jung WK, Jeong MH, Yoon TR, Kim HK. Sanguinarine induces apoptosis of HT-29 human colon cancer cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent pathway. Int J Toxicol. 2012 Jan-Feb;31(1):70-7.
  158. Eastman KL, McFarland LV, Raugi GJ. Buyer beware: a black salve caution. J Am Acad Dermatol. 2011 Nov;65(5):e154-5.
  159. Schlichte MJ, Downing CP, Ramirez-Fort M, Gordon R, Tyring S. Bloodroot associated eschar. Dermatol Online J. 2014 Jul 15;20(7). pii: 13030/qt05r0r2wr
  160. Martin K, Sur R, Liebel F, et al. Parthenolide-depleted feverfew (Tanacetum parthenium) protects skin from UV irradiation and external aggression. Arch Dermatol Res. Feb 2008;300(2):69-80. doi: 10.1007/s00403-007-0818-x
  161. Izumi E, Morello LG, Ueda-Nakamura T, et al. Trypanosoma cruzi: antiprotozoal activity of parthenolide obtained from Tanacetum parthenium (L.) Schultz Bip. (Asteraceae, Compositae) against epimastigote and amastigote forms. Exp Parasitol. Mar 2008;118(3):324-330. doi: 10.1016/j.exppara.2007.08.015
  162. Mohsenzadeh F, Chehregani A, Amiri H. Chemical composition, antibacterial activity and cytotoxicity of essential oils of Tanacetum parthenium in different developmental stages. Pharm Biol. Sep 2011;49(9):920-926. doi: 10.3109/13880209.2011.556650
  163. Mathema VB, Koh YS, Thakuri BC, et al. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation. Apr 2012;35(2):560-565. doi: 10.1007/s10753-011-9346-0
  164. Wu C, Chen F, Wang X, et al. Identification of antioxidant phenolic compounds in feverfew (Tanacetum parthenium) by HPLC-ESI-MS/MS and NMR. Phytochem Anal.Sep-Oct 2007;18(5):401-410. doi: 10.1002/pca.995
  165. Diener HC, Pfaffenrath V, Schnitker J, et al. Efficacy and safety of 6.25 mg t.i.d. feverfew CO2-extract (MIG-99) in migraine prevention – A randomized, double-blind, multicentre, placebo-controlled study. Cephalalgia. Nov 2005;25(11):1031-1041. doi: 10.1111/j.1468-2982.2005.00950.x
  166. Cady RK, Goldstein J, Nett R, et al. A double-blind placebo-controlled pilot study of sublingual feverfew and ginger (LipiGesic M) in the treatment of migraine. Headache.Jul-Aug 2011;51(7):1078-1086. doi: 10.1111/j.1526-4610.2011.01910.x
  167. Ferro EC, Biagini AP, da Silva IE, et al. The combined effect of acupuncture and Tanacetum parthenium on quality of life in women with headache: randomised study.Acupunct Med. Dec 2012;30(4):252-257. doi: 10.1136/acupmed-2012-010195
  168. Pattrick M, Heptinstall S, Doherty M. Feverfew in rheumatoid arthritis: a double blind, placebo controlled study. Ann Rheum Dis. Jul 1989;48(7):547-549.
  169. Kim SL, Lee ST, Trang KT, et al. Parthenolide exerts inhibitory effects on angiogenesis through the downregulation of VEGF/VEGFRs in colorectal cancer. Int J Mol Med. May 2014;33(5):1261-1267. doi: 10.3892/ijmm.2014.1669
  170. Al-Fatlawi AA, Al-Fatlawi AA, Irshad M, et al. Effect of parthenolide on growth and apoptosis regulatory genes of human cancer cell lines. Pharm Biol. Jan 2015;53(1):104-109. doi: 10.3109/13880209.2014.911919
  171. Lu C, Wang W, Jia Y, et al. Inhibition of AMPK/autophagy potentiates parthenolide-induced apoptosis in human breast cancer cells. J Cell Biochem. Aug 2014;115(8):1458-1466. doi: 10.1002/jcb.24808
  172. Yip-Schneider MT, Nakshatri H, Sweeney CJ, et al. Parthenolide and sulindac cooperate to mediate growth suppression and inhibit the nuclear factor-kappa B pathway in pancreatic carcinoma cells. Mol Cancer Ther. Apr 2005;4(4):587-594. doi: 10.1158/1535-7163.MCT-04-0215
  173. Zhang S, Ong CN, Shen HM. Involvement of proapoptotic Bcl-2 family members in parthenolide-induced mitochondrial dysfunction and apoptosis. Cancer Lett. Aug 10 2004;211(2):175-188. doi: 10.1016/j.canlet.2004.03.033
  174. Parada-Turska J, Paduch R, Majdan M, et al. Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells.Pharmacol Rep. Mar-Apr 2007;59(2):233-237.
  175. Lesiak K, Koprowska K, Zalesna I, et al. Parthenolide, a sesquiterpene lactone from the medical herb feverfew, shows anticancer activity against human melanoma cells in vitro. Melanoma Res. Feb 2010;20(1):21-34. doi: 10.1097/CMR.0b013e328333bbe4
  176. Carlisi D, D’Anneo A, Angileri L, et al. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol. Jun 2011;226(6):1632-1641. doi: 10.1002/jcp.22494
  177. Curry EA, 3rd, Murry DJ, Yoder C, et al. Phase I dose escalation trial of feverfew with standardized doses of parthenolide in patients with cancer. Invest New Drugs. Aug 2004;22(3):299-305. doi: 10.1023/B:DRUG.0000026256.38560.be
  178. Guzman ML, Rossi RM, Neelakantan S, et al. An orally bioavailable parthenolide analog selectively eradicates acute myelogenous leukemia stem and progenitor cells. Blood.Dec 15 2007;110(13):4427-4435. doi: 10.1182/blood-2007-05-090621
  179. Pareek A, Suthar M, Rathore GS, et al. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn Rev. Jan 2011;5(9):103-110. doi: 10.4103/0973-7847.79105
  180. Reuter U, Chiarugi A, Bolay H, et al. Nuclear factor-kappaB as a molecular target for migraine therapy. Ann Neurol. Apr 2002;51(4):507-516.
  181. Sahler J, Bernard JJ, Spinelli SL, et al. The feverfew plant-derived compound, parthenolide enhances platelet production and attenuates platelet activation through NF-kappaB inhibition. Thromb Res. May 2011;127(5):426-434. doi: 10.1016/j.thromres.2010.12.013
  182. Groenewegen WA, Heptinstall S. A comparison of the effects of an extract of feverfew and parthenolide, a component of feverfew, on human platelet activity in-vitro. J Pharm Pharmacol. Aug 1990;42(8):553-557.
  183. Heptinstall S, White A, Williamson L, et al. Extracts of feverfew inhibit granule secretion in blood platelets and polymorphonuclear leucocytes. Lancet. May 11 1985;1(8437):1071-1074.
  184. Johnson ES, Kadam NP, Hylands DM, et al. Efficacy of feverfew as prophylactic treatment of migraine. Br Med J (Clin Res Ed). Aug 31 1985;291(6495):569-573.
  185. Williams CA, Hoult JR, Harborne JB, et al. A biologically active lipophilic flavonol from Tanacetum parthenium. Phytochemistry. Jan 1995;38(1):267-270.
  186. Anderson KN, Bejcek BE. Parthenolide induces apoptosis in glioblastomas without affecting NF-kappaB. J Pharmacol Sci. Feb 2008;106(2):318-320.
  187. Paulsen E, Christensen LP, Andersen KE. Compositae dermatitis from airborne parthenolide. Br J Dermatol. Mar 2007;156(3):510-515. doi: 10.1111/j.1365-2133.2006.07674.x
  188. Killoran CE, Crawford GH, Pedvis-Leftick A. Two cases of compositae dermatitis exacerbated by moisturizer containing feverfew. Dermatitis. Dec 2007;18(4):225-229.
  189. Unger M, Frank A. Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction. Rapid Commun Mass Spectrom. 2004;18(19):2273-2281. doi: 10.1002/rcm.1621
  190. Collins SC, Dufresne RG, Jr. Dietary supplements in the setting of mohs surgery.Dermatol Surg. Jun 2002;28(6):447-452.
  191. Murphy JJ, Heptinstall S, Mitchell JR. Randomised double-blind placebo-controlled trial of feverfew in migraine prevention. Lancet. Jul 23 1988;2(8604):189-192.
  192. Kothari S, Jain AK, Mehta SC, et al. Hypolipidemic effect of fresh Triticum aestivum (wheat) grass juice in hypercholesterolemic rats. Acta Pol Pharm. Mar-Apr 2011;68(2):291-294.
  193. Sethi J, Yadav M, Dahiya K, et al. Antioxidant effect of Triticum aestivium (wheat grass) in high-fat diet-induced oxidative stress in rabbits. Methods Find Exp Clin Pharmacol. May 2010;32(4):233-235.
  194. Shyam R, Singh SN, Vats P, et al. Wheat grass supplementation decreases oxidative stress in healthy subjects: a comparative study with spirulina. J Altern Complement Med. Oct 2007;13(8):789-791.
  195. Ben-Arye E, Goldin E, Wengrower D, et al. Wheat grass juice in the treatment of active distal ulcerative colitis: a randomized double-blind placebo-controlled trial. Scand J Gastroenterol. Apr 2002;37(4):444-449.
  196. Ng SC, Lam YT, Tsoi KK, et al. Systematic review: the efficacy of herbal therapy in inflammatory bowel disease. Aliment Pharmacol Ther. Oct 2013;38(8):854-863.
  197. Marawaha RK, Bansal D, Kaur S, et al. Wheat grass juice reduces transfusion requirement in patients with thalassemia major: a pilot study. Indian Pediatr. Jul 2004;41(7):716-720.
  198. Choudhary DR, Naithani R, Panigrahi I, et al. Effect of wheat grass therapy on transfusion requirement in beta-thalassemia major. Indian J Pediatr. Apr 2009;76(4):375-376.
  199. Singh K, Pannu MS, Singh P, et al. Effect of wheat grass tablets on the frequency of blood transfusions in Thalassemia Major. Indian J Pediatr. Jan 2010;77(1):90-91.
  200. Bar-Sela G, Tsalic M, Fried G, et al. Wheat grass juice may improve hematological toxicity related to chemotherapy in breast cancer patients: a pilot study. Nutr Cancer.2007;58(1):43-48.
  201. Das A, Raychaudhuri U, Chakraborty R. Effect of freeze drying and oven drying on antioxidant properties of fresh wheatgrass. Int J Food Sci Nutr. Sep 2012;63(6):718-721.
  202. Shukla V, Vashistha M, Singh SN. Evaluation of antioxidant profile and activity of amalaki (Emblica officinalis), spirulina and wheat grass. Indian J Clin Biochem. Jan 2009;24(1):70-75.
  203. Gerritsen ME, Carley WW, Ranges GE, et al. Flavonoids inhibit cytokine-induced endothelial cell adhesion protein gene expression. Am J Pathol. Aug 1995;147(2):278-292.
  204. Mukhopadhyay S, et al. The role of iron chelation activity of wheat grass juice in patients with myelodysplastic syndrome. Journal of Clinical Oncology, 2009 ASCO Annual Meeting Proceedings (Post-Meeting Edition). Vol 27, No 15S (May 20 Supplement), 2009: 7012
  205. Blumenthal M, et al. The Complete German Commission E Monographs: Therapeutic Guide to Herbal Medicines. Austin: American Botanical Council; 1998
  206. Foster S, et al. Tyler’s Honest Herbal: A Sensible Guide to the Use of Herbs and Related Remedies, 3rd ed. New York: Haworth Herbal Press; 1993.
  207. Blumenthal M, et al. Herbal Medicine Expanded Commission E Monographs, 1st ed. Austin: American Botanical Council; 2000.
  208. Vanscheidt W, et al. Efficacy and safety of a Butcher’s broom preparation (Ruscus aculeatus L. extract) compared to placebo in patients suffering from chronic venous insufficiencyArzneimittelforschung 2002;52:243-50.
  209. Cluzan RV, et al. Treatment of secondary lymphedema of the upper limb with CYCLO 3 FORT. Lymphology 1996 Mar;29(1):29-35.
  210. Cappelli R, Nicora M, DiPerri T. Use of extract of Ruscus aculeatus in venous disease in the lower limbs. Drugs Exp Clin Res 1988;14(4):277-83.
  211. Thomas-Anterion C, et al. Unexplained chronic diarrhea, apropos of 4 new cases under Cyclo 3 fort and review of the literature. Rev Med Interne 1993 Apr;14(4):215-7. Review.
  212. Boyle P, Diehm C, Robertson C. Meta-analysis of clinical trials of Cyclo 3 Fort in the treatment of chronic venous insufficiency. Int Angiol. 2003 Sep;22(3):250-62.
  213. Guex JJ, Enriquez Vega DM, Avril L, Boussetta S, Taïeb C. Assessment of quality of life in Mexican patients suffering from chronic venous disorder – impact of oral Ruscus aculeatus-hesperidin-methyl-chalcone-ascorbic acid treatment – ’QUALITY Study’.Phlebology. 2009 Aug;24(4):157-65.
  214. Huang YL, Kou JP, Ma L, et al. Possible mechanism of the anti-inflammatory activity of ruscogenin: role of intercellular adhesion molecule-1 and nuclear factor-kappaB. J Pharmacol Sci. 2008 Oct;108(2):198-205.
  215. Guex JJ, Avril L, Enrici E, et al. Quality of life improvement in Latin American patients suffering from chronic venous disorder using a combination of Ruscus aculeatus and hesperidin methyl-chalcone and ascorbic acid (quality study). Int Angiol. 2010 Dec;29(6):525-32.
  216. De Marino S, Festa C, Zollo F, Iorizzi M. Novel steroidal components from the underground parts of Ruscus aculeatus L. Molecules. 2012 Nov 26;17(12):14002-14.
  217. Longo L, Vasapollo G. Determination of anthocyanins in Ruscus aculeatus L. berries. J Agric Food Chem. 2005 Jan 26;53(2):475-9.
  218. Barbič M, Schmidt TJ, Jürgenliemk G. Novel phenyl-1-benzoxepinols from butcher’s broom (Rusci rhizoma). Chem Biodivers. 2012 Jun;9(6):1077-83.
  219. Facino RM, Carini M, Stefani R, Aldini G, Saibene L. Anti-elastase and anti-hyaluronidase activities of saponins and sapogenins from Hedera helix, Aesculus hippocastanum, and Ruscus aculeatus: factors contributing to their efficacy in the treatment of venous insufficiency. Arch Pharm (Weinheim). 1995 Oct;328(10):720-4.
  220. Barbič M, Willer EA, Rothenhöfer M, Heilmann J, Fürst R, Jürgenliemk G. Spirostanol saponins and esculin from Rusci rhizoma reduce the thrombin-induced hyperpermeability of endothelial cells. Phytochemistry. 2013 Jun;90:106-13.
  221. Sadarmin PP, Timperley J. An unusual case of Butcher’s Broom precipitating diabetic ketoacidosis. J Emerg Med. 2013 Sep;45(3):e63-5.
  222. Tamayo C, et al. The chemistry and biological activity of herbs used in Flor-essence herbal tonic and Essiac. Phytotherapy Res 2000;14:1-14.
  223. Fetrow CW, et al. Professional’s Handbook of Complementary and Alternative Medicines. Philadelphia: Springhouse; 1999.
  224. Newall CA, et al. Herbal medicines: a guide for health-care professionals. Pharmaceutical Press. London. 1996.
  225. Chu DT, Wong WL, Mavligit GM. Immunotherapy with Chinese medicinal herbs. II. Reversal of cyclophosphamide-induced immune suppression by administration of fractionated Astragalus membranaceus in vivoJ Clin Lab Immunol 1988;25:125-9.
  226. Taixiang W, Munro AJ, Guanjian L. Chinese medical herbs for chemotherapy side effects in colorectal cancer patients. Cochrane Database Syst Rev. 2005 Jan 25;(1):CD004540.
  227. McCulloch M, See C, Shu XJ, et al. Astragalus-based Chinese herbs and platinum-based chemotherapy for advanced non-small-cell lung cancer: meta-analysis of randomized trialsJ Clin Oncol. 2006 Jan 20;24(3):419-30.
  228. Cui R, He J, Wang B, et al. Suppressive effect of Astragalus membranaceus Bunge on chemical hepatocarcinogenesis in rats. Cancer Chemother Pharmacol. 2003 Jan;51(1):75-80.
  229. Cho WC, Leung KN. In vitro and in vivo anti-tumor effects of Astragalus membranaceus.Cancer Lett. Jul 8 2007;252(1):43-54.
  230. Yu L, Lu Y, Li J, Wang H. Identification of a gene associated with astragalus and angelica’s renal protective effects by silver staining mRNA differential display. Chin Med J (Engl) 2002;115:923-7.
  231. Ahmed MS, Hou SH, Battaglia MC, et al. Treatment of idiopathic membranous nephropathy with the herb Astragalus membranaceus. Am J Kidney Dis. Dec 2007;50(6):1028-1032.
  232. Ai P, Yong G, Dingkun G, et al. Aqueous extract of Astragali Radix induces human natriuresis through enhancement of renal response to atrial natriuretic peptide. J Ethnopharmacol. Mar 28 2008;116(3):413-421.
  233. Shen HH, Wang K, Li W, et al. Astragalus Membranaceus prevents airway hyperreactivity in mice related to Th2 response inhibition.J Ethnopharmacol. Mar 5 2008;116(2):363-369.
  234. Chen KT, Su CH, Hsin LH, et al. Reducing fatigue of athletes following oral administration of huangqi jianzhong tang. Acta Pharmacol Sin. 2002 Aug;23(8):757-61.
  235. Shi R, He L, Hu Y, et al. The regulatory action of radix astragali on M-cholinergic receptor of the brain of senile ratsJ Tradit Chin Med 2001;21:232-5.
  236. Tang W, et al. Chinese Drugs of Plant Origin. Berlin: Springer-Verlag; 1992.
  237. Qun L, Luo Q, Zhang ZY, et al. Effects of astragalus on IL-2/IL-2R system in patients with maintained hemodialysis. Clin Nephrol. 1999 Nov;52(5):333-4.
  238. Chu DT, Lepe-Zuniga J, Wong WL, et al. Fractionated extract of Astragalus, a Chinese medicinal herb, potentiates LAK cell cytotoxicity generated by a low dose of recombinant interleukin-2J Clin Lab Immunol 1988;26:183-7.
  239. Upton R. Astragalus root: analytical, quality control and therapeutic monograph. American Herbal Pharmacopoeia. 1999;1:1-25.
  240. Wu P, Dugoua JJ, Eyawo O, Mills EJ. Traditional Chinese medicines in the treatment of hepatocellular cancers: a systematic review and meta-analysis. J Exp Clin Cancer Res.2009 Aug 12;28(1):112.
  241. Lu MC, Yao CH, Wang SH, et al. Effect of Astragalus membranaceus in rats on peripheral nerve regeneration: in vitro and in vivo studies. J Trauma. 2010 Feb;68(2):434-40.
  242. Wojcikowski K, Wohlmuth H, Johnson DW, Gobe G. Effect of Astragalus membranaceus and Angelica sinensis combined with Enalapril in rats with obstructive uropathy. Phytother Res. 2010 Jun;24(6):875-84.
  243. Auyeung KK, Woo PK, Law PC, Ko JK. Astragalus saponins modulate cell invasiveness and angiogenesis in human gastric adenocarcinoma cells. J Ethnopharmacol. 2011 Aug 12.
  244. Guo L, Bai SP, Zhao L, Wang XH. Astragalus polysaccharide injection integrated with vinorelbine and cisplatin for patients with advanced non-small cell lung cancer: effects on quality of life and survival. Med Oncol. 2011 Sep 18.
  245. Zhang WJ, Wojta J, Binder BR. Regulation of the fibrinolytic potential of cultured human umbilical vein endothelial cells: astragaloside IV downregulates plasminogen activator inhibitor-1 and upregulates tissue-type plasminogen activator expression. J Vasc Res. 1997 Jul-Aug;34(4):273-80.
  246. Chen HW, Lin IH, Chen YJ,  et al. A novel infusible botanically-derived drug, PG2, for cancer-related fatigue: a phase II double-blind, randomized placebo-controlled study.Clin Invest Med. 2012 Feb 1;35(1):E1-11.
  247. Zhang CZ, Wang SX, Zhang Y, Chen JP, Liang XM. In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms. J Ethnopharmacol. 2005 Apr 26;98(3):295-300.
  248. Fu J, Wang Z, Huang L, et al. Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus membranaceus (Huangqi). Phytother Res. 2014 Sep;28(9):1275-83.
  249. Xu X, Li F, Zhang X, et al. In vitro synergistic antioxidant activity and identification of antioxidant components from Astragalus membranaceus and Paeonia lactiflora. PLoS One. 2014 May 9;9(5):e96780. doi: 10.1371/journal.pone.0096780. eCollection 2014.
  250. Ji L, Chen X, Zhong X, et al. Astragalus membranaceus up-regulate Cosmc expression and reverse IgA dys-glycosylation in IgA nephropathy. BMC Complement Altern Med.2014 Jun 18;14:195. doi: 10.1186/1472-6882-14-
  251. Anasuya Ray, Smreti Vasudevan, Suparna Sengupta, 6-Shogaol Inhibits Breast Cancer Cells and Stem Cell-Like Spheroids by Modulation of Notch Signaling Pathway and Induction of Autophagic Cell Death.  Published: September 10, 2015. DOI: 10.1371/journal.pone.0137614
  252. 195.http://www.theguardian.com/world/2013/aug/03/uruguay-cannabis-
  253. lawhttp://www.presstv.ir/detail/2013/08/01/316632/uruguay-passes-bill-on-
  254. marijuana/http://www.ctvnews.ca/business/uruguay-taking-steps-to-become-first-nation-with-legal-marijuana-industry-1.1393211
  255. http://news.yahoo.com/uruguays-house-oks-legal-marijuana-market-plan-024441970.html(1)
  256. http://edrv.endojournals.org/content/27/1/73.fullhttp://rstb.royalsocietypublishing.org/content/367/1607/3326.abstract?sid=20cf2c23-e4fd-49e3-9398-ec8be2e00226.
  257. A.  JOHNS, Psychiatric effects of cannabis. SUBSTANCE MISUSE PAPERS, 
  258. IBID.
  259. Abrams DI, Jay CA, Shade SB, et al. Cannabis in painful HIV-associated sensory neuropathy: a randomized placebo-controlled trial. Neurology. 2007;68(7):515-521.
  260. Ahmedzai S, Carlyle DL, Calder IT, Moran F. Anti-emetic efficacy and toxicity of nabilone, a synthetic cannabinoid, in lung cancer chemotherapy. Br J Cancer. 1983;48(5):657-663.
  261. American College of Physicians. Supporting research into the therapeutic role of marijuana. (Position paper, 2008.) Accessed at http://www.acponline.org/advocacy/where_we_stand/other_issues/medmarijuana.pdf on March 4, 2015.
  262. Bhattacharyya S, Crippa JA, Allen P, et al. Induction of psychosis by {delta}9-tetrahydrocannabinol reflects modulation of prefrontal and striatal function during attentional salience processing. Arch Gen Psychiatry. 2012;69(1):27-36.
  263. Beal JE, Olson R, Laubenstein L, et al. Dronabinol as a treatment for anorexia associated with weight loss in patients with AIDS. J Pain Symptom Manage. 1995;10(2):89-97.
  264. Beal JE, Olson R, Lefkowitz L, et al. Long-term efficacy and safety of dronabinol for acquired immunodeficiency syndrome-associated anorexia. J Pain Symptom Manage. 1997;14(1):7-14.
  265. Cannabis-In-Cachexia-Study-Group, Strasser F, Luftner D, Possinger K, et al. Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group. J Clin Onc. 2006;24:3394-3400.
  266. Ellis RJ, Toperoff W, Vaida F, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology. 2009;34(3):672-680.
  267. Guzmán M, Duarte MJ, Blázquez C, et al. A pilot clinical study of Delta9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme. Br J Cancer. 2006;95(2):197-203.
  268. Haney M, Rabkin J, Gunderson E, Foltin RW. Dronabinol and marijuana in HIV(+) marijuana smokers: acute effects on caloric intake and mood. Psychopharmacology. (Berl). 2005;181:170-178.
  269. Haney M, Gunderson EW, Rabkin J, et al. Dronabinol and marijuana in HIV-positive marijuana smokers. Caloric intake, mood,and sleep. J Acquir Immune Defic Syndr. 2007;45(5):545-554.
  270. Herman TS, Einhorn LH, Jones SE, et al. Superiority of nabilone over prochlorperazine as an antiemetic in patients receiving cancer chemotherapy. N Engl J Med. 1979;300(23):1295-1297.
  271. Jatoi A, Windschitl HE, Loprinzi CL, et al. Dronabinol versus megestrol acetate versus combination therapy for cancer-associated anorexia: a North Central Cancer Treatment Group study. J Clin Oncol. 2002;20(2):567-573.
  272. Johnson JR, Burnell-Nugent M, Lossignol D, et al. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC:CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manage. 2010;39(2):167-179.
  273. Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J Pain Symptom Manage. 2013;46(2):207-218.
  274. Karst M, Salim K, Burstein S, et al. Analgesic effect of the synthetic cannabinoid CT-3 on chronic neuropathic pain: a randomized controlled trial. JAMA. 2003;290:1757-1762.
  275. Koppel BS, Brust JC, Fife T, et al. Systematic review: efficacy and safety of medical marijuana in selected neurologic disorders: report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2014;82(17):1556-1563.
  276. Kramer JL. Medical marijuana for cancer. CA Cancer J Clin. 2014 Dec 10.
  277. Meiri E, Jhangiani H, Vredenburgh JJ, et al. Efficacy of dronabinol alone and in combination with ondansetron versus ondansetron alone for delayed chemotherapy-induced nausea and vomiting. Curr Med Res Opin. 2007;23(3):533-543.
  278. Musty RE, Rossi R. Effects of Smoked Cannabis and Oral Δ9-Tetrahydrocannabinol on Nausea and Emesis After Cancer Chemotherapy: A Review of State Clinical Trials. Journal of Cannabis Therapeutics. 2001; 1(1): 29-56.
  279. National Cancer Institute. Cannabis and Cannabinoids (PDQ®) Health Professional Version, updated 12/17/14. Accessed at http://www.cancer.gov/cancertopics/pdq/cam/cannabis/healthprofessional on March 4, 2015.
  280. Portenoy RK, Ganae-Motan ED, Allende S, et al. Nabiximols for opioid-treated cancer patients with poorly-controlled chronic pain: a randomized, placebo-controlled, graded-dose trial. J Pain. 2012;13(5):438-449.
  281. Radwan MM, Elsohly MA, Slade D, et al. Biologically active cannabinoids from high-potency Cannabis sativa. J Nat Prod. 2009;72(5):906-911.
  282. Rog DJ, Nurmikko TJ, Young CA. Oromucosal delta9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther. 2007;29(9):2068-2079.
  283. Ross SA, ElSohly MA, Sultana GN, et al. Flavonoid glycosides and cannabinoids from the pollen of Cannabis sativa L. Phytochem Anal. 2005;16(1):45-48.
  284. Smith PF. New approaches in the management of spasticity in multiple sclerosis patients: role of cannabinoids. Ther Clin Risk Manag. 2010;6:59-63.
  285. Tramér MR, Carroll D, Campbell FA, et al. Cannabinoids for control of chemotherapy induced nausea and vomiting: quantitative systematic review. BMJ. 2001;323:16-21.
  286. Ware MA, Wang T, Shapiro S, et al. Smoked cannabis for chronic neuropathic pain: a randomized controlled trial. CMAJ. 2010;182(14):E694-701.
  287. Wilsey B, Marcotte T, Deutsch R, et al. Low-dose vaporized cannabis significantly improves neuropathic pain. J Pain. 2013;14(2):136-148.
  288. Woolridge E, Barton S, Samuel J, et al. Cannabis use in HIV for pain and other medical symptoms. J Pain Symptom Manage. 2005;29:358-367.
  289. M Guzmán, M J Duarte, C Blázquez, J Ravina, M C Rosa, I Galve-Roperh, C Sánchez, G Velasco and L González-Feria, A pilot clinical study of Δ9-tetrahydrocannabinol in patients with recurrent glioblastoma multiforme, British Journal of Cancer (2006) 95, 197–203. doi:10.1038/sj.bjc.6603236 www.bjcancer.com Published online 27 June 2006.
  290.  M. van der SteltW. B. VeldhuisP. R. BärG. A. VeldinkJ. F. G. Vliegenthart, and K. Nicolay, Neuroprotection by Δ9-Tetrahydrocannabinol, the Main Active Compound in Marijuana, against Ouabain-Induced In Vivo Excitotoxicity.  The Journal of Neuroscience, 1 September 2001, 21(17): 6475-6479.
  291. Paola MassiAngelo VaccaniStefania CerutiArianna ColomboMaria P. Abbracchio and Daniela ParolaroAntitumor Effects of Cannabidiol, a Nonpsychoactive Cannabinoid, on Human Glioma Cell Lines.  JPET March 2004 vol. 308 no. 3 838-845.
  292. Sofía TorresMar Lorente1Fátima Rodríguez-Fornés1Sonia Hernández-Tiedra1María Salazar1,2, A Combined Preclinical Therapy of Cannabinoids and Temozolomide against Glioma.  doi: 10.1158/1535-7163.MCT-10-0688Mol Cancer Therapy, January 2011 10; 90.
  293. McAllister SDMurase RChristian RTLau DZielinski AJAllison JAlmanza CPakdel ALee JLimbad CLiu YDebs RJMoore DHDesprez PY,  Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis.  Breast Cancer Res Treat. 2011 Aug;129(1):37-47. doi: 10.1007/s10549-010-1177-4. Epub 2010 Sep 22.
  294. Alessia Ligresti, Aniello Schiano Moriello, Katarzyna Starowicz, Isabel Matias, Simona Pisanti, Luciano De Petrocellis, Chiara Laezza, Giuseppe Portella, Maurizio Bifulco and Vincenzo Di Marzo,  Anti-tumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma.   Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR Pozzuoli, Italy (AL, ASM, KS, IM, VDM); Istituto di Cibernetica, CNR Pozzuoli, Italy (ASM, LDP); Dipartimento di Biologia e Patologia Cellulare e Molecolare “L.Califano”, Università di Napoli “Federico II”(SP, CL, GP, MB) and Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Fisciano, Italy (SP, MB).
  295. María M CaffarelClara AndradasEmilia MiraEduardo Pérez-GómezCamilla CeruttiGema Moreno-BuenoJuana M FloresIsabel García-RealJosé PalaciosSantos MañesManuel Guzmán and Cristina Sánchez, Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition, Molecular Cancer20109:196, 22 July 2010.
  296. LUCIANO DE PETROCELLIS, DOMINIQUE MELCK, ANTONELLA PALMISANO§, TIZIANA BISOGNO, CHIARA LAEZZA, MAURIZIO BIFULCO, AND VINCENZO DI MARZO, The endogenous cannabinoid anandamide inhibits human breast cancer cell proliferation.  Proc. Natl. Acad. Sci. USA, Vol. 95, pp. 8375–8380, July 1998 Pharmacology.
  297. A Preet, R K Ganju, J E Groopman,  Δ9-Tetrahydrocannabinol inhibits epithelial growth factor-induced lung cancer cell migration in vitro as well as its growth and metastasis in vivo.  Oncogene (2008) 27, 339–346; doi:10.1038/sj.onc.1210641; published online 9 July 2007
  298. Ramer R1, Bublitz KFreimuth NMerkord JRohde HHaustein MBorchert PSchmuhl ELinnebacher MHinz B.,  Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J. 2012 Apr;26(4):1535-48. doi: 10.1096/fj.11-198184. Epub 2011 Dec 23.
  299.  Preet AQamri ZNasser MWPrasad AShilo KZou XGroopman JEGanju RK, Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila). 2011 Jan;4(1):65-75. doi: 10.1158/1940-6207.CAPR-10-0181. Epub 2010 Nov 19.
  300. Mimeault MPommery NWattez NBailly CHénichart JP.  Anti-proliferative and apoptotic effects of anandamide in human prostatic cancer cell lines: implication of epidermal growth factor receptor down-regulation and ceramide production.  Prostate. 2003 Jun 15;56(1):1-12.
  301. Juan A. Ramos and  Fernando J. Bianco, The role of cannabinoids in prostate cancer: Basic science perspective and potential clinical applications.  Indian J Urol. 2012 Jan-Mar; 28(1): 9–14.
  302. De Petrocellis LLigresti ASchiano Moriello AIappelli MVerde RStott CGCristino LOrlando PDi Marzo V, Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol. 2013 Jan;168(1):79-102. doi: 10.1111/j.1476-5381.2012.02027.
  303.  Kristin GustafssonBirger ChristenssonBirgitta Sander and Jenny FlygareCannabinoid Receptor-Mediated Apoptosis Induced by R(+)-Methanandamide and Win55,212-2 Is Associated with Ceramide Accumulation and p38 Activation in Mantle Cell Lymphoma.  Molecular PharmacologyNovember 2006 vol. 70 no. 5 1612-1620.
  304. Kristin Gustafsson, Xiao Wang1, Denise Severa1, Maeve Eriksson1, Eva Kimby2, Mats Merup2, Birger Christensson1, Expression of cannabinoid receptors type 1 and type 2 in non-Hodgkin lymphoma: Growth inhibition by receptor activation. International Journal of Cancer, Volume 123,  Issue 5pages 1025–10331 September 2008.
  305. Jia WHegde VLSingh NPSisco DGrant SNagarkatti MNagarkatti PS, Delta9-tetrahydrocannabinol-induced apoptosis in Jurkat leukemia T cells is regulated by translocation of Bad to mitochondria. Mol Cancer Res. 2006 Aug;4(8):549-62.
  306.  Whyte DAAl-Hammadi SBalhaj GBrown OMPenefsky HSSouid AK.  Cannabinoids inhibit cellular respiration of human oral cancer cells. Pharmacology. 2010;85(6):328-35. doi: 10.1159/000312686. Epub 2010 Jun 2.
  307. Vara DSalazar MOlea-Herrero NGuzmán MVelasco GDíaz-Laviada, Anti-tumoral action of cannabinoids on hepatocellular carcinoma: role of AMPK-dependent activation of autophagy. Cell Death Differ. 2011 Jul;18(7):1099-111. doi: 10.1038/cdd.2011.32. Epub 2011, April 8.
  308. A. Carracedo, M. Gironella, M. Lorente, S. Garcia, M. Guzam, F. Velasco, J. Lovanna, Cannabinoids Induce Apoptosis of Pancreatic Tumor Cells via Endoplasmic Reticulum Stress–Related Genes. Cancer Research, The American Association of Cancer Research, 2006, May 5.
  309. Morgan G1, Ward RBarton M.The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies.  Clin Oncol (R Coll Radiol). 2004 Dec;16(8):549-60.

– See more at: www.phoreveryoung.com

The Cure for Cancer? That’s an easy question to answer! The Cure for Cancer is Found in its Prevention NOT in its Treatment! – Dr. Robert O. Young

Do you know what rotten apples, grapefruit or bananas look like? If you do then you know what cancer cells look like. Cancer cells are nothing more that healthy cells that are spoiling because of a compromised environment! Look at the picture below and you will see colorized cancerous body cells rotting in their toxic acidic environment.

What compromises the internal environment of a human body that causes body cells to begin spoiling and rotting? The answer is simple! The body’s build-up of acidic metabolic and dietary waste that has not been properly eliminated through the four channels of elimination – urination, defecation, respiration and perspiration!

Cancer is not a noun but an adjective that describes what is happening to body cells in an acidic environment due to an acidic lifestyle and diet. www.phoreveryoung.com
To learn more about Dr. Robert O. Young go to: https://www.linkedin.com/in/drrobertoyoung

2 thoughts on “Using Alkalizing Herbs in the Prevention, Treatment and Reversal of Any Cancerous Condition”

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s