Category Archives: alkaline diet

104 Year Old Retired Japanese Pharmacy Chief Said: “The World Needs To Know, Alkaline Water Kills Cancer”

Screen Shot 2018-10-21 at 4.52.03 PM

Dr. Shigeaki Hinohara
You’ve probably heard or read that cancer cells can not live in an alkaline environment because alkaline water is extremely saturated with reduced hydrogen ions (OH-) or electrons (-) that buffer or neutralize the hydrogen ions (H+) or protons (+) that can cause cancer!

What Is Alkaline Water?

The pH (potential hydrogen ions or protons) scale runs from zero to fourteen with 7 being the med-point. A liquid with a pH of less than 7 is considered acid unless it donates more base or electrons than acids or protons. A basic or alkaline substance that contributes more electrons than protons is referred to as an electron donor and is considered alkaline regardless of the ph of the substance on the pH scale.  For example your tap water is generally mixed with chlorine making the water base or alkaline at a pH of 7 or above.  Because tap water contains other acidic substances such as antibiotics (acids), hormones (acids) and heavy metals this makes tap water a hydrogen or proton donor and is considered acidic to the stomach, blood and interstitial fluids of the Interstitium (the fluids that surround every human cell in the body).

(This illustration shows the compartments of interstitial fluids of the Interstitium)

When the body builds up acids in the interstitial fluids this is when you feel low energy, fatigue, start gaining weight and are at risk for serious health challenges such as diabetes and cancer.

Screen Shot 2018-10-21 at 4.48.51 PM

These negative health effects are completely avoidable by just drinking pure, reduced electro-rich alkaline water and eating organic green electron-rich alkaline vegetables and fruit such as lemon, lime, tomato, green pepper, avocado, cucumber, spinach, parsley, broccoli, and peppermint leaf, just to name a few.  To learn more about acidic and alkaline foods read, The pH Miracle, revised and updated – http://www.phoreveryoung.com

Importance Of Alkalinity

The foods we eat, the liquids we drink, the air that we breath and the thoughts that we have can determine our overall pH levels and has been the basis of my research for 40 years.

Dr. Otto Warburg of Germany, received two Nobel Prizes in 1931 and 1952 for discovering that all cancer cells and tumors are bathed in an acidic interstitial fluid environment and suggested this was the cause of cancer.  He also managed to prove that cancer cannot thrive in an alkaline, electron-rich  environment where the pH level in the interstitial fluids is 7.36 to 7.4.

According to Dr. Warburg, acidosis (excess of hydrogen ions or protons) is not only connected to the development of cancer, but it was also the cause of cancer and other diseases like osteoporosis, diabetes and heart disease.

Screen Shot 2018-10-21 at 5.09.08 PM

Here is the special anti-acid or alkalizing, electron-donor beverage you can drink every day prevent the build-up into the acid holding compartments in the Interstitium.

Ingredients:

  • 1 organic lemon

  • 1/2 organic cucumber

  • 1/4 of organic ginger root

  • 1/2 cup of organic peppermint leaf

 

Directions:

  1. Before you cut the organic ginger, peel a small amount of it.
  2. Slice up all the ingredients and add one glass of alkaline, electron-rich water.
  3. Do not throw the ingredients after one use if you want to get the most out of them.
  4. If you keep adding new alkaline, electron-rich water, they will last around three days.
  5. Drink the alkaline, electron-rich water first thing in the morning in order to receive the optimum results!

How Does It Work?

Organic lemon possesses numerous alkalizing, electron-donor properties. Organic lemon is high in potassium bicarbonate making it inherently alkaline and an electron-donor. It is also a powerful disinfectant and antibacterial compound which helps in the treatment of numerous conditions from bad breath to cholera, and has even 22 anti-cancer properties the most important being bicarbonates of sodium and potassium.

To learn more about preventing cancer and other diseases and for great alkaline, electron-rich recipes read, The pH Miracle for Cancer:

 

You register and attend the next medical conference where Robert O Young PhD will be speaking go to:

To learn more about the research and findings of Dr. Robert O. Young go to: http://www.drrobertyoung.com

 

Cancer is a Preventable and Treatable Disease that Requires Major Lifestyle Changes!

“The cure for cancer is NOT found in its treatment but is found in its prevention”  –  Dr. Robert O. Young

Ninety-five-percent (95%) of ALL sickness and diseases are caused by what you eat, what you drink, what you breath and what you think.  Only five-percent (5%) of ALL sickness and diseases are caused by genetics.  The five-percent (5%) of All genetic factors are triggered by the epi-genetics or the alkaline environment of interstitial fluids determined by what you eat, what you drink, what you breath, and what you thing,  Therefore, one-hundred-percent (100%) is caused by what you eat, what you drink, what you breath and what you think.
(Sympathetic Resonance Technology, Scientific Foundations and Summary of Biologic and Clinical Studies, Dec. 2002, Vol. 8, No. 6: 835-842, Alkalizing Nutritional Therapy, medcraveonline.com/IJCAM/IJCAM-02-00046.php Robert O Young and Galina Migalko. Universal Medical Imaging Group, Medical doctor, non-invasive medical diagnostics, USA)

Abstract

This year, more than 1.5 million Americans and more than 18 million people worldwide are expected to be diagnosed with cancer, a disease commonly believed to be preventable. Only 5–10% of all cancer cases can be attributed to genetic defects, whereas the remaining 90–95% have their roots in the environment and lifestyle. The lifestyle factors include cigarette smoking, diet (fried foods, red meat), alcohol, sun exposure, environmental pollutants, infections, stress, obesity, and physical inactivity. The evidence indicates that of all cancer-related deaths, almost 25–30% are due to tobacco, as many as 30–35% are linked to diet, about 15–20% are due to infections, and the remaining percentage are due to other factors like radiation, stress, physical activity, environmental pollutants etc. Therefore, cancer prevention requires smoking cessation, increased ingestion of fruits and vegetables, moderate use of alcohol, caloric restriction, exercise, avoidance of direct exposure to sunlight, minimal meat consumption, use of whole grains, use of vaccinations, and regular check-ups. In this review, we present evidence that inflammation is the link between the agents/factors that cause cancer and the agents that prevent it. In addition, we provide evidence that cancer is a preventable disease that requires major lifestyle changes.

INTRODUCTION

After sequencing his own genome, pioneer genomic researcher Craig Venter remarked at a leadership for the twenty-first century conference, “Human biology is actually far more complicated than we imagine. Everybody talks about the genes that they received from their mother and father, for this trait or the other. But in reality, those genes have very little impact on life outcomes. Our biology is way too complicated for that and deals with hundreds of thousands of independent factors. Genes are absolutely not our fate. They can give us useful information about the increased risk of a disease, but in most cases they will not determine the actual cause of the disease, or the actual incidence of somebody getting it. Most biology will come from the complex interaction of all the proteins and cells working with environmental factors, not driven directly by the genetic code” (http://indiatoday.digitaltoday.in/index.php?

This statement is very important because looking to the human genome for solutions to most chronic illnesses, including the diagnosis, prevention, and treatment of cancer, is overemphasized in today’s world. Observational studies, however, have indicated that as we migrate from one country to another, our chances of being diagnosed with most chronic illnesses are determined not by the country we come from but by the country we migrate to (1–4). In addition, studies with identical twins have suggested that genes are not the source of most chronic illnesses. For instance, the concordance between identical twins for breast cancer was found to be only 20% (5). Instead of our genes, our lifestyle and environment account for 90–95% of our most chronic illnesses.

Cancer continues to be a worldwide killer, despite the enormous amount of research and rapid developments seen during the past decade. According to recent statistics, cancer accounts for about 23% of the total deaths in the USA and is the second most common cause of death after heart disease (6). Death rates for heart disease, however, have been steeply decreasing in both older and younger populations in the USA from 1975 through 2002. In contrast, no appreciable differences in death rates for cancer have been observed in the United States (6).

By 2020, the world population is expected to have increased to 7.5 billion; of this number, approximately 15 million new cancer cases will be diagnosed, and 12 million cancer patients will die (7). These trends of cancer incidence and death rates again remind us of Dr. John Bailer’s May 1985 judgment of the US national cancer program as a “qualified failure,” a judgment made 14 years after President Nixon’s official declaration of the “War on Cancer.” Even after an additional quarter century of extensive research, researchers are still trying to determine whether cancer is preventable and are asking “If it is preventable, why are we losing the war on cancer?” In this review, we attempt to answer this question by analyzing the potential risk factors of cancer and explore our options for modulating these risk factors.

Cancer is caused by both internal factors (such as inherited mutations, hormones, and immune conditions) and environmental/acquired factors (such as tobacco, diet, radiation, and infectious organisms; Fig. 1). The link between diet and cancer is revealed by the large variation in rates of specific cancers in various countries and by the observed changes in the incidence of cancer in migrating. For example, Asians have been shown to have a 25 times lower incidence of prostate cancer and a ten times lower incidence of breast cancer than do residents of Western countries, and the rates for these cancers increase substantially after Asians migrate to the West (http://www.dietandcancerreportorg/?p=ER).

Fig 1

The role of genes and environment in the development of cancer. A The percentage contribution of genetic and environmental factors to cancer. The contribution of genetic factors and environmental factors towards cancer risk is 5–10% and 90–95% respectively. B Family risk ratios for selected cancers. The numbers represent familial risk ratios, defined as the risk to a given type of relative of an affected individual divided by the population prevalence. The data shown here is taken from a study conducted in Utah to determine the frequency of cancer in the first-degree relatives (parents + siblings + offspring). The familial risk ratios were assessed as the ratio of the observed number of cancer cases among the first degree relatives divided by the expected number derived from the control relatives, based on the years of birth (cohort) of the case relatives. In essence, this provides an age-adjusted risk ratio to first-degree relatives of cases compared with the general population.

C Percentage contribution of each environmental factor. The percentages represented here indicate the attributable-fraction of cancer deaths due to the specified environmental risk factor.

The importance of lifestyle factors in the development of cancer was also shown in studies of monozygotic twins (8). Only 5–10% of all cancers are due to an inherited gene defect. Various cancers that have been linked to genetic defects are shown in Fig. 2. Although all cancers are a result of multiple mutations (9, 10), these mutations are due to interaction with the environment (11, 12).

 Fig. 2

Genes associated with risk of different cancers

These observations indicate that most cancers are not of hereditary origin and that lifestyle factors, such as dietary habits, smoking, alcohol consumption, and infections, have a profound influence on their development (13). Although the hereditary factors cannot be modified, the lifestyle and environmental factors are potentially modifiable. The lesser hereditary influence of cancer and the modifiable nature of the environmental factors point to the preventability of cancer. The important lifestyle factors that affect the incidence and mortality of cancer include tobacco, alcohol, diet, obesity, infectious agents, environmental pollutants, and radiation.

RISK FACTORS OF CANCER

Tobacco

Smoking was identified in 1964 as the primary cause of lung cancer in the US Surgeon General’s Advisory Commission Report (http://profiles.nlm.nih.gov/NN/Views/AlphaChron/date/10006/05/01/2008), and ever since, efforts have been ongoing to reduce tobacco use. Tobacco use increases the risk of developing at least 14 types of cancer (Fig. 3). In addition, it accounts for about 25–30% of all deaths from cancer and 87% of deaths from lung cancer. Compared with nonsmokers, male smokers are 23 times and female smokers 17 times more likely to develop lung cancer.

(http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_Facts_and_Figures_2008.asp accessed on 05/01/2008).

The carcinogenic effects of active smoking are well documented; the U. S. Environmental Protection Agency, for example, in 1993 classified environmental tobacco smoke (from passive smoking) as a known (Group A) human lung carcinogen.

(http://cfpub2.epa.gov/ncea/cfm/recordisplay.cfm?deid=2835 accessed on 05/01/2008).

Tobacco contains at least 50 carcinogens. For example, one tobacco metabolite, benzopyrenediol epoxide, has a direct etiologic association with lung cancer (14). Among all developed countries considered in total, the prevalence of smoking has been slowly declining; however, in the developing countries where 85% of the world’s population resides, the prevalence of smoking is increasing. According to studies of recent trends in tobacco usage, developing countries will consume 71% of the world’s tobacco by 2010, with 80% increased usage projected for East Asia.

(http://www.fao.org/DOCREP/006/Y4956E/Y4956E00.HTM accessed on 01/11/08)

The use of accelerated tobacco-control programs, with an emphasis in areas where usage is increasing, will be the only way to reduce the rates of tobacco-related cancer mortality.

 Fig. 3

Cancers that have been linked to alcohol and smoking

Percentages represent the cancer mortality attributable to alcohol and smoking in men and women as reported by Irigaray et al. (see 13).

How smoking contributes to cancer is not fully understood. We do know that smoking can alter a large number of cell-signaling pathways. Results from studies in our group have established a link between cigarette smoke and inflammation. Specifically, we showed that tobacco smoke can induce activation of NF-κB, an inflammatory marker (15,16). Thus, anti-inflammatory agents that can suppress NF-κB activation may have potential applications against cigarette smoke.

We also showed that curcumin, derived from the dietary spice turmeric, can block the NF-κB induced by cigarette smoke (15). In addition to curcumin, we discovered that several natural phytochemicals also inhibit the NF-κB induced by various carcinogens (17). Thus, the carcinogenic effects of tobacco appear to be reduced by these dietary agents. A more detailed discussion of dietary agents that can block inflammation and thereby provide chemopreventive effects is presented in the following section.

Alcohol

The first report of the association between alcohol and an increased risk of esophageal cancer was published in 1910 (18). Since then, a number of studies have revealed that chronic alcohol consumption is a risk factor for cancers of the upper aerodigestive tract, including cancers of the oral cavity, pharynx, hypopharynx, larynx, and esophagus (18–21), as well as for cancers of the liver, pancreas, mouth, and breast (Fig. 3). Williams and Horn (22), for example, reported an increased risk of breast cancer due to alcohol. In addition, a collaborative group who studied hormonal factors in breast cancer published their findings from a reanalysis of more than 80% of individual epidemiological studies that had been conducted worldwide on the association between alcohol and breast cancer risk in women. Their analysis showed a 7.1% increase in relative risk of breast cancer for each additional 10 g/day intake of alcohol (23). In another study, Longnecker et al., (24) showed that 4% of all newly diagnosed cases of breast cancer in the USA are due to alcohol use. In addition to it being a risk factor for breast cancer, heavy intake of alcohol (more than 50–70 g/day) is a well-established risk factor for liver (25) and colorectal (26,27) cancers.

There is also evidence of a synergistic effect between heavy alcohol ingestion and hepatitis C virus (HCV) or hepatitis B virus (HBV), which presumably increases the risk of hepatocellular carcinoma (HCC) by more actively promoting cirrhosis. For example, Donato et al. (28) reported that among alcohol drinkers, HCC risk increased linearly with a daily intake of more than 60 g. However, with the concomitant presence of HCV infection, the risk of HCC was two times greater than that observed with alcohol use alone (i.e., a positive synergistic effect). The relationship between alcohol and inflammation has also been well established, especially in terms of alcohol-induced inflammation of the liver.

How alcohol contributes to carcinogenesis is not fully understood but ethanol may play a role. Study findings suggest that ethanol is not a carcinogen but is a cocarcinogen (29). Specifically, when ethanol is metabolized, acetaldehyde and free radicals are generated; free radicals are believed to be predominantly responsible for alcohol-associated carcinogenesis through their binding to DNA and proteins, which destroys folate and results in secondary hyperproliferation. Other mechanisms by which alcohol stimulates carcinogenesis include the induction of cytochrome P-4502E1, which is associated with enhanced production of free radicals and enhanced activation of various procarcinogens present in alcoholic beverages; a change in metabolism and in the distribution of carcinogens, in association with tobacco smoke and diet; alterations in cell-cycle behavior such as cell-cycle duration leading to hyperproliferation; nutritional deficiencies, for example, of methyl, vitamin E, folate, pyridoxal phosphate, zinc, and selenium; and alterations of the immune system. Tissue injury, such as that occurring with cirrhosis of the liver, is a major prerequisite to HCC. In addition, alcohol can activate the NF-κB proinflammatory pathway (30), which can also contribute to tumorigenesis (31). Furthermore, it has been shown that benzopyrene, a cigarette smoke carcinogen, can penetrate the esophagus when combined with ethanol (32). Thus anti-inflammatory agents may be effective for the treatment of alcohol-induced toxicity.

In the upper aerodigestive tract, 25–68% of cancers are attributable to alcohol, and up to 80% of these tumors can be prevented by abstaining from alcohol and smoking (33). Globally, the attributable fraction of cancer deaths due to alcohol drinking is reported to be 3.5% (34). The number of deaths from cancers known to be related to alcohol consumption in the USA could be as low as 6% (as in Utah) or as high as 28% (as in Puerto Rico). These numbers vary from country to country, and in France have approached 20% in males (18).

Diet

In 1981, Doll and Peto (21) estimated that approximately 30–35% of cancer deaths in the USA were linked to diet (Fig. 4). The extent to which diet contributes to cancer deaths varies a great deal, according to the type of cancer (35). For example, diet is linked to cancer deaths in as many as 70% of colorectal cancer cases. How diet contributes to cancer is not fully understood. Most carcinogens that are ingested, such as nitrates, nitrosamines, pesticides, and dioxins, come from food or food additives or from cooking.

 Fig. 4

Cancer deaths (%) linked to diet as reported by Willett (see 35)

Heavy consumption of red meat is a risk factor for several cancers, especially for those of the gastrointestinal tract, but also for colorectal (36–38), prostate (39), bladder (40), breast (41), gastric (42), pancreatic, and oral (43) cancers. Although a study by Dosil-Diaz et al., (44) showed that meat consumption reduced the risk of lung cancer, such consumption is commonly regarded as a risk for cancer for the following reasons. The heterocyclic amines produced during the cooking of meat are carcinogens. Charcoal cooking and/or smoke curing of meat produces harmful carbon compounds such as pyrolysates and amino acids, which have a strong cancerous effect. For instance, PhIP (2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine) is the most abundant mutagen by mass in cooked beef and is responsible for ~20% of the total mutagenicity found in fried beef. Daily intake of PhIP among Americans is estimated to be 280–460 ng/day per person (45).

Nitrites and nitrates are used in meat because they bind to myoglobin, inhibiting botulinum exotoxin production; however, they are powerful carcinogens (46). Long-term exposure to food additives such as nitrite preservatives and azo dyes has been associated with the induction of carcinogenesis (47). Furthermore, bisphenol from plastic food containers can migrate into food and may increase the risk of breast (48) and prostate (49) cancers. Ingestion of arsenic may increase the risk of bladder, kidney, liver, and lung cancers (50). Saturated fatty acids, trans fatty acids, and refined sugars and flour present in most foods have also been associated with various cancers. Several food carcinogens have been shown to activate inflammatory pathways.

Obesity

According to an American Cancer Society study (51), obesity has been associated with increased mortality from cancers of the colon, breast (in postmenopausal women), endometrium, kidneys (renal cell), esophagus (adenocarcinoma), gastric cardia, pancreas, prostate, gallbladder, and liver (Fig. 5). Findings from this study suggest that of all deaths from cancer in the United States, 14% in men and 20% in women are attributable to excess weight or obesity. Increased modernization and a Westernized diet and lifestyle have been associated with an increased prevalence of overweight people in many developing countries (52).

 Fig. 5

Various cancers that have been linked to obesity. In the USA overweight and obesity could account for 14% of all deaths from cancer in men and 20% of those in women (see 51).

Studies have shown that the common denominators between obesity and cancer include neurochemicals; hormones such as insulinlike growth factor 1 (IGF-1), insulin, leptin; sex steroids; adiposity; insulin resistance; and inflammation (53).

Involvement of signaling pathways such as the IGF/insulin/Akt signaling pathway, the leptin/JAK/STAT pathway, and other inflammatory cascades have also been linked with both obesity and cancer (53). For instance, hyperglycemia, has been shown to activate NF-κB (54), which could link obesity with cancer. Also known to activate NF-κB are several cytokines produced by adipocytes, such as leptin, tumor necrosis factor (TNF), and interleukin-1 (IL-1) (55). Energy balance and carcinogenesis has been closely linked (53). However, whether inhibitors of these signaling cascades can reduce obesity-related cancer risk remains unanswered. Because of the involvement of multiple signaling pathways, a potential multi-targeting agent will likely be needed to reduce obesity-related cancer risk.

Infectious Agents

Worldwide, an estimated 17.8% of neoplasms are associated with infections; this percentage ranges from less than 10% in high-income countries to 25% in African countries (56, 57). Viruses account for most infection-caused cancers (Fig. 6). Human papillomavirus, Epstein Barr virus, Kaposi’s sarcoma-associated herpes virus, human T-lymphotropic virus 1, HIV, HBV, and HCV are associated with risks for cervical cancer, anogenital cancer, skin cancer, nasopharyngeal cancer, Burkitt’s lymphoma, Hodgkin’s lymphoma, Kaposi’s sarcoma, adult T-cell leukemia, B-cell lymphoma, and liver cancer.

Fig. 6

Various cancers that have been linked to infection. The estimated total of infection attributable cancer in the year 2002 is 17.8% of the global cancer burden. The infectious agents associated with each type of cancer is shown in the bracket. HPV Human papilloma virus, HTLV human T-cell leukemia virus, HIV human immunodeficiency virus, EBV Epstein–Barr virus (see 57).

In Western developed countries, human papillomavirus and HBV are the most frequently encountered oncogenic DNA viruses. Human papillomavirus is directly mutagenic by inducing the viral genes E6 and E7 (58), whereas HBV is believed to be indirectly mutagenic by generating reactive oxygen species through chronic inflammation (59–61). Human T-lymphotropic virus is directly mutagenic, whereas HCV (like HBV) is believed to produce oxidative stress in infected cells and thus to act indirectly through chronic inflammation (62, 63). However, other microorganisms, including selected parasites such as Opisthorchis viverrini or Schistosoma haematobium and bacteria such as Helicobacter pylori, may also be involved, acting as cofactors and/or carcinogens (64).

The mechanisms by which infectious agents promote cancer are becoming increasingly evident. Infection-related inflammation is the major risk factor for cancer, and almost all viruses linked to cancer have been shown to activate the inflammatory marker, NF-κB (65). Similarly, components of Helicobacter pylorihave been shown to activate NF-κB (66). Thus, agents that can block chronic inflammation should be effective in treating these conditions.

Environmental Pollution

Environmental pollution has been linked to various cancers (Fig. 7). It includes outdoor air pollution by carbon particles associated with polycyclic aromatic hydrocarbons (PAHs); indoor air pollution by environmental tobacco smoke, formaldehyde, and volatile organic compounds such as benzene and 1,3-butadiene (which may particularly affect children); food pollution by food additives and by carcinogenic contaminants such as nitrates, pesticides, dioxins, and other organochlorines; carcinogenic metals and metalloids; pharmaceutical medicines; and cosmetics (64).

Fig. 7

Various cancers that have been linked to environmental carcinogens. The carcinogens linked to each cancer is shown inside bracket. (see 64).

Numerous outdoor air pollutants such as PAHs increase the risk of cancers, especially lung cancer. PAHs can adhere to fine carbon particles in the atmosphere and thus penetrate our bodies primarily through breathing. Long-term exposure to PAH-containing air in polluted cities was found to increase the risk of lung cancer deaths. Aside from PAHs and other fine carbon particles, another environmental pollutant, nitric oxide, was found to increase the risk of lung cancer in a European population of nonsmokers. Other studies have shown that nitric oxide can induce lung cancer and promote metastasis. The increased risk of childhood leukemia associated with exposure to motor vehicle exhaust was also reported (64).

Indoor air pollutants such as volatile organic compounds and pesticides increase the risk of childhood leukemia and lymphoma, and children as well as adults exposed to pesticides have increased risk of brain tumors, Wilm’s tumors, Ewing’s sarcoma, and germ cell tumors. In utero exposure to environmental organic pollutants was found to increase the risk for testicular cancer. In addition, dioxan, an environmental pollutant from incinerators, was found to increase the risk of sarcoma and lymphoma.

Long-term exposure to chlorinated drinking water has been associated with increased risk of cancer. Nitrates, in drinking water, can transform to mutagenic N-nitroso compounds, which increase the risk of lymphoma, leukemia, colorectal cancer, and bladder cancer (64).

Radiation

Up to 10% of total cancer cases may be induced by radiation (64), both ionizing and non-ionizing, typically from radioactive substances and ultraviolet (UV), pulsed electromagnetic fields. Cancers induced by radiation include some types of leukemia, lymphoma, thyroid cancers, skin cancers, sarcomas, lung and breast carcinomas. One of the best examples of increased risk of cancer after exposure to radiation is the increased incidence of total malignancies observed in Sweden after exposure to radioactive fallout from the Chernobyl nuclear power plant. Radon and radon decay products in the home and/or at workplaces (such as mines) are the most common sources of exposure to ionizing radiation. The presence of radioactive nuclei from radon, radium, and uranium was found to increase the risk of gastric cancer in rats. Another source of radiation exposure is x-rays used in medical settings for diagnostic or therapeutic purposes. In fact, the risk of breast cancer from x-rays is highest among girls exposed to chest irradiation at puberty, a time of intense breast development. Other factors associated with radiation-induced cancers in humans are patient age and physiological state, synergistic interactions between radiation and carcinogens, and genetic susceptibility toward radiation.

Non-ionizing radiation derived primarily from sunlight includes UV rays, which are carcinogenic to humans. Exposure to UV radiation is a major risk for various types of skin cancers including basal cell carcinoma, squamous cell carcinoma, and melanoma. Along with UV exposure from sunlight, UV exposure from sun beds for cosmetic tanning may account for the growing incidence of melanoma. Depletion of the ozone layer in the stratosphere can augment the dose-intensity of UVB and UVC, which can further increase the incidence of skin cancer.

Low-frequency electromagnetic fields can cause clastogenic DNA damage. The sources of electromagnetic field exposure are high-voltage power lines, transformers, electric train engines, and more generally, all types of electrical equipments. An increased risk of cancers such as childhood leukemia, brain tumors and breast cancer has been attributed to electromagnetic field exposure. For instance, children living within 200 m of high-voltage power lines have a relative risk of leukemia of 69%, whereas those living between 200 and 600 m from these power lines have a relative risk of 23%. In addition, a recent meta-analysis of all available epidemiologic data showed that daily prolonged use of mobile phones for 10 years or more showed a consistent pattern of an increased risk of brain tumors (64).

Fruits, vegetables, spices, condiments and cereals with potential to prevent cancer. Fruits include 1 apple, 2apricot, 3 banana, 4 blackberry, 5 cherry, 6 citrus fruits, 7 dessert date, 8 durian, 9 grapes, 10 guava, 11 Indian gooseberry, 12 mango, 13 malay apple, 14 mangosteen, 15 pineapple, 16 pomegranate. Vegetables include 1artichok, 2 avocado, 3 brussels sprout, 4 broccoli, 5 cabbage, 6 cauliflower, 7 carrot, 8 daikon 9 kohlrabi, 10onion, 11 tomato, 12 turnip, 13 ulluco, 14 water cress, 15 okra, 16 potato, 17 fiddle head, 18 radicchio, 19komatsuna, 20 salt bush, 21 winter squash, 22 zucchini, 23 lettuce, 24 spinach. Spices and condiments include 1 turmeric, 2 cardamom, 3 coriander, 4 black pepper, 5 clove, 6 fennel, 7 rosemary, 8 sesame seed, 9 mustard, 10 licorice, 11 garlic, 12 ginger, 13 parsley, 14 cinnamon, 15 curry leaves, 16 kalonji, 17 fenugreek, 18camphor, 19 pecan, 20 star anise, 21 flax seed, 22 black mustard, 23 pistachio, 24 walnut, 25 peanut, 26 cashew nut. Cereals include 1 rice, 2 wheat, 3 oats, 4 rye, 5 barley, 6 maize, 7 jowar, 8 pearl millet, 9 proso millet, 10 foxtail millet, 11 little millet, 12 barnyard millet, 13 kidney bean, 14 soybean, 15 mung bean, 16 black bean, 17 pigeon pea, 18 green pea, 19 scarlet runner bean, 20 black beluga, 21 brown spanish pardina, 22green, 23 green (eston), 24 ivory white, 25 multicolored blend, 26 petite crimson, 27 petite golden, 28 red chief.

Click here to read the entire article:
To learn more about a healthy lifestyle and diet for the prevention of all sickness and disease read The pH Miracle revised and updated and The pH Miracle for Cancer – http://www.phoreveryoung.com

Lecture in Dubai – The Annual Conference on Bacterial, Viral and Infectious Diseases

Join Robert O Young PhD and Galina Migalko MD in Dubai on December 5th and 6th, 2018 for the Annual Conference on Bacterial, Viral and Infectious Diseases. They will be Key Note Speakers and doing a workshop on the New Biology.

For more information and to register go to: https://bacterialdiseases.infectiousconferences.com/organizing-committee.php

The following is the abstract for Dr. Young’s lecture:

The Dismantling of the Viral Theory

Robert O Young CPT, MSc, DSc, PhD, Naturopathic Practitioner

Abstract

There is now over 100 years of documented history and research on the Polio virus and whether or not its treatment by inoculation has been successful in eradicating Polio. I am suggesting in this article and in my lecture that there are significant findings based on historical and past and current research, including my own that the viral theory of Polio and possibly other modern-day diseases, such as Post-Polio Syndrome, Polio Vaccine-Induced Paralysis, Legionnaires, CNS disease, Cancer, HIV/AIDS and now Zika may be caused by acidic chemical poisoning from DDT (dichloro-diphenyl-trichloroethane) and other related DDT pesticides, acidic vaccinations, and other factors including lifestyle and dietary factors rather than from a lone infectious virus. I will present ten historical graphs outlining the history of Polio, the production of DDT, BHC, Lead, Arsenic, Polio vaccinations and the author’s theory that chemical poisoning, vaccination, and lifestyle and dietary choices are a more likely causes for the symptoms of Polio, neurological diseases, Cancer, HIV/AIDS and now Zika.

THE POSSIBLE CAUSE OF POLIO, POST-POLIO, CNS, PVIPD, LEGIONNAIRES, AIDS and the CANCER EPIDEMIC – MASS ACIDIC CHEMICAL POISONING?

References

1. L. N. Kolonel, D. Altshuler, and B. E. Henderson. The multiethnic cohort study: exploring genes, lifestyle and cancer risk. Nat. Rev. Cancer. 4:519–27 (2004) doi:10.1038/nrc1389. [PubMed]

2. J. K. Wiencke. Impact of race/ethnicity on molecular pathways in human cancer. Nat. Rev. Cancer. 4:79–84 (2004) doi:10.1038/nrc1257. [PubMed]

3. R. G. Ziegler, R. N. Hoover, M. C. Pike, A. Hildesheim, A. M. Nomura, D. W. West, A. H. Wu-Williams, L. N. Kolonel, P. L. Horn-Ross, J. F. Rosenthal, and M. B. Hyer. Migration patterns and breast cancer risk in Asian-American women. J. Natl. Cancer Inst.85:1819–27 (1993) doi:10.1093/jnci/85.22.1819. [PubMed]

4. W. Haenszel and M. Kurihara. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J. Natl. Cancer Inst.40:43–68 (1968). [PubMed]

5. A. S. Hamilton and T. M. Mack. Puberty and genetic susceptibility to breast cancer in a case-control study in twins. N. Engl. J. Med.348:2313–22 (2003) doi:10.1056/NEJMoa021293. [PubMed]

6. A. Jemal, R. Siegel, E. Ward, T. Murray, J. Xu, and M. J. Thun. Cancer statistics, 2007. CA Cancer J. Clin.57:43–66 (2007). [PubMed]

7. F. Brayand, and B. Moller. Predicting the future burden of cancer. Nat. Rev. Cancer. 6:63–74 (2006) doi:10.1038/nrc1781. [PubMed]

8. P. Lichtenstein, N. V. Holm, P. K. Verkasalo, A. Iliadou, J. Kaprio, M. Koskenvuo, E. Pukkala, A. Skytthe, and K. Hemminki. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med.343:78–85 (2000) doi:10.1056/NEJM200007133430201. [PubMed]

9. K. R. Loeb, and L. A. Loeb. Significance of multiple mutations in cancer. Carcinogenesis. 21:379–85 (2000) doi:10.1093/carcin/21.3.379. [PubMed]

10. W. C. Hahn, and R. A. Weinberg. Modelling the molecular circuitry of cancer. Nat. Rev. Cancer. 2:331–41 (2002) doi: 10.1038/nrc795. [PubMed]

11. L. A. Mucci, S. Wedren, R. M. Tamimi, D. Trichopoulos, and H. O. Adami. The role of gene-environment interaction in the aetiology of human cancer: examples from cancers of the large bowel, lung and breast. J. Intern. Med.249:477–93 (2001) doi:10.1046/j.1365-2796.2001.00839.x. [PubMed]

12. K. Czene, and K. Hemminki. Kidney cancer in the Swedish Family Cancer Database: familial risks and second primary malignancies. Kidney Int.61:1806–13 (2002) doi:10.1046/j.1523-1755.2002.00304.x.[PubMed]

13. P. Irigaray, J. A. Newby, R. Clapp, L. Hardell, V. Howard, L. Montagnier, S. Epstein, and D. Belpomme. Lifestyle-related factors and environmental agents causing cancer: an overview. Biomed. Pharmacother.61:640–58 (2007) doi:10.1016/j.biopha.2007.10.006. [PubMed]

14. M. F. Denissenko, A. Pao, M. Tang, and G. P. Pfeifer. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science. 274:430–2 (1996) doi:10.1126/science.274.5286.430.[PubMed]

15. R. J. Anto, A. Mukhopadhyay, S. Shishodia, C. G. Gairola, and B. B. Aggarwal. Cigarette smoke condensate activates nuclear transcription factor-kappaB through phosphorylation and degradation of IkappaB(alpha): correlation with induction of cyclooxygenase-2. Carcinogenesis. 23:1511–8 (2002) doi: 10.1093/carcin/23.9.1511. [PubMed]

16. S. Shishodiaand, and B. B. Aggarwal. Cyclooxygenase (COX)-2 inhibitor celecoxib abrogates activation of cigarette smoke-induced nuclear factor (NF)-kappaB by suppressing activation of IkappaBalpha kinase in human non-small cell lung carcinoma: correlation with suppression of cyclin D1, COX-2, and matrix metalloproteinase-9. Cancer Res. 64:5004–12 (2004) doi:10.1158/0008-5472.CAN-04-0206. [PubMed]

17. H. Ichikawa, Y. Nakamura, Y. Kashiwada, and B. B. Aggarwal. Anticancer drugs designed by mother nature: ancient drugs but modern targets. Curr Pharm Des. 13:3400–16 (2007) doi:10.2174/138161207782360500. [PubMed]

18. A. J. Tuyns. Epidemiology of alcohol and cancer. Cancer Res. 39:2840–3 (1979). [PubMed]

19. H. Maier, E. Sennewald, G. F. Heller, and H. Weidauer. Chronic alcohol consumption—the key risk factor for pharyngeal cancer. Otolaryngol. Head Neck Surg.110:168–73 (1994). [PubMed]

20. H. K. Seitz, F. Stickel, and N. Homann. Pathogenetic mechanisms of upper aerodigestive tract cancer in alcoholics. Int. J. Cancer. 108:483–7 (2004) doi:10.1002/ijc.11600. [PubMed]

21. R. Doll, and R. Peto. The causes of cancer: quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 66:1191–308 (1981). [PubMed]

22. R. R. Williams, and J. W. Horm. Association of cancer sites with tobacco and alcohol consumption and socioeconomic status of patients: interview study from the Third National Cancer Survey. J. Natl. Cancer Inst.58:525–47 (1977). [PubMed]

23. N. Hamajima et al. Alcohol, tobacco and breast cancer—collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br. J. Cancer. 87:1234–45 (2002) doi:10.1038/sj.bjc.6600596. [PMC free article] [PubMed]

24. M. P. Longnecker, P. A. Newcomb, R. Mittendorf, E. R. Greenberg, R. W. Clapp, G. F. Bogdan, J. Baron, B. MacMahon, and W. C. Willett. Risk of breast cancer in relation to lifetime alcohol consumption. J. Natl. Cancer Inst.87:923–9 (1995) doi:10.1093/jnci/87.12.923. [PubMed]

25. F. Stickel, D. Schuppan, E. G. Hahn, and H. K. Seitz. Cocarcinogenic effects of alcohol in hepatocarcinogenesis. Gut. 51:132–9 (2002) doi:10.1136/gut.51.1.132. [PMC free article] [PubMed]

26. H. K. Seitz, G. Poschl, and U. A. Simanowski. Alcohol and cancer. Recent Dev Alcohol. 14:67–95 (1998) doi:10.1007/0-306-47148-5_4. [PubMed]

27. H. K. Seitz, S. Matsuzaki, A. Yokoyama, N. Homann, S. Vakevainen, and X. D. Wang. Alcohol and cancer. Alcohol Clin. Exp. Res.25:137S–143S (2001). [PubMed]

28. F. Donato, U. Gelatti, R. M. Limina, and G. Fattovich. Southern Europe as an example of interaction between various environmental factors: a systematic review of the epidemiologic evidence. Oncogene. 25:3756–70 (2006) doi:10.1038/sj.onc.1209557. [PubMed]

29. G. Poschl, and H. K. Seitz. Alcohol and cancer. Alcohol Alcohol. 39:155–65 (2004) doi:10.1093/alcalc/agh057. [PubMed]

30. G. Szabo, P. Mandrekar, S. Oak, and J. Mayerle. Effect of ethanol on inflammatory responses. Implications for pancreatitis. Pancreatology. 7:115–23 (2007) doi:10.1159/000104236. [PMC free article][PubMed]

31. B. B. Aggarwal. Nuclear factor-kappaB: the enemy within. Cancer Cell. 6:203–208 (2004) doi:10.1016/j.ccr.2004.09.003. [PubMed]

32. M. Kuratsune, S. Kohchi, and A. Horie. Carcinogenesis in the esophagus. I. Penetration of benzo(a) pyrene and other hydrocarbons into the esophageal mucosa. Gann. 56:177–87 (1965). [PubMed]

33. C. La Vecchia, A. Tavani, S. Franceschi, F. Levi, G. Corrao, and E. Negri. Epidemiology and prevention of oral cancer. Oral Oncol.33:302–312 (1997). [PubMed]

34. P. Boffetta, M. Hashibe, C. La Vecchia, W. Zatonski, and J. Rehm. The burden of cancer attributable to alcohol drinking. Int. J. Cancer. 119:884–887 (2006) doi:10.1002/ijc.21903. [PubMed]

35. W. C. Willett. Diet and cancer. Oncologist. 5:393–404 (2000) doi:10.1634/theoncologist.5-5-393.[PubMed]

36. S. A. Bingham, R. Hughes, and A. J. Cross. Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J. Nutr.132:3522S–3525S (2002).[PubMed]

37. A. Chao, M. J. Thun, C. J. Connell, M. L. McCullough, E. J. Jacobs, W. D. Flanders, C. Rodriguez, R. Sinha, and E. E. Calle. Meat consumption and risk of colorectal cancer. JAMA. 293:172–182 (2005) doi:10.1001/jama.293.2.172. [PubMed]

38. N. Hogg. Red meat and colon cancer: heme proteins and nitrite in the gut. A commentary on diet-induced endogenous formation of nitroso compounds in the GI tract. Free Radic. Biol. Med.43:1037–1039 (2007) doi:10.1016/j.freeradbiomed.2007.07.006. [PubMed]

39. C. Rodriguez, M. L. McCullough, A. M. Mondul, E. J. Jacobs, A. Chao, A. V. Patel, M. J. Thun, and E. E. Calle. Meat consumption among Black and White men and risk of prostate cancer in the Cancer Prevention Study II Nutrition Cohort. Cancer Epidemiol. Biomarkers Prev. 15:211–216 (2006) doi:10.1158/1055-9965.EPI-05-0614. [PubMed]

40. R. Garcia-Closas, M. Garcia-Closas, M. Kogevinas, N. Malats, D. Silverman, C. Serra, A. Tardon, A. Carrato, G. Castano-Vinyals, M. Dosemeci, L. Moore, N. Rothman, and R. Sinha. Food, nutrient and heterocyclic amine intake and the risk of bladder cancer. Eur. J. Cancer. 43:1731–1740 (2007) doi:10.1016/j.ejca.2007.05.007. [PubMed]

41. A. Tappel. Heme of consumed red meat can act as a catalyst of oxidative damage and could initiate colon, breast and prostate cancers, heart disease and other diseases. Med. Hypotheses. 68:562–4 (2007) doi:10.1016/j.mehy.2006.08.025. [PubMed]

42. L. H. O’Hanlon. High meat consumption linked to gastric-cancer risk. Lancet Oncol. 7:287 (2006) doi:10.1016/S1470-2045(06)70638-6. [PubMed]

43. T. N. Toporcov, J. L. Antunes, and M. R. Tavares. Fat food habitual intake and risk of oral cancer. Oral Oncol. 40:925–931 (2004) doi:10.1016/j.oraloncology.2004.04.007. [PubMed]

44. O. Dosil-Diaz, A. Ruano-Ravina, J. J. Gestal-Otero, and J. M. Barros-Dios. Meat and fish consumption and risk of lung cancer: A case-control study in Galicia, Spain. Cancer Lett.252:115–122 (2007) doi:10.1016/j.canlet.2006.12.008. [PubMed]

45. S. N. Lauber, and N. J. Gooderham. The cooked meat derived genotoxic carcinogen 2-amino-3-methylimidazo[4,5-b]pyridine has potent hormone-like activity: mechanistic support for a role in breast cancer. Cancer Res.67:9597–0602 (2007) doi:10.1158/0008–5472.CAN-07-1661. [PubMed]

46. D. Divisi, S. Di Tommaso, S. Salvemini, M. Garramone, and R. Crisci. Diet and cancer. Acta Biomed. 77:118–123 (2006). [PubMed]

47. Y. F. Sasaki, S. Kawaguchi, A. Kamaya, M. Ohshita, K. Kabasawa, K. Iwama, K. Taniguchi, and S. Tsuda. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res.519:103–119 (2002). [PubMed]

48. M. Durando, L. Kass, J. Piva, C. Sonnenschein, A. M. Soto, E. H. Luque, and M. Munoz-de-Toro. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ. Health Perspect.115:80–6 (2007). [PMC free article] [PubMed]

49. S. M. Ho, W. Y. Tang, J. Belmonte de Frausto, and G. S. Prins. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res.66:5624–32 (2006) doi:10.1158/0008-5472.CAN-06-0516.[PMC free article] [PubMed]

50. A. Szymanska-Chabowska, J. Antonowicz-Juchniewicz, and R. Andrzejak. Some aspects of arsenic toxicity and carcinogenicity in living organism with special regard to its influence on cardiovascular system, blood and bone marrow. Int. J. Occup. Med. Environ. Health. 15:101–116 (2002). [PubMed]

51. E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 348:1625–1638 (2003) doi:10.1056/NEJMoa021423. [PubMed]

52. A. Drewnowski, and B. M. Popkin. The nutrition transition: new trends in the global diet. Nutr. Rev.55:31–43 (1997). [PubMed]

53. S. D. Hursting, L. M. Lashinger, L. H. Colbert, C. J. Rogers, K. W. Wheatley, N. P. Nunez, S. Mahabir, J. C. Barrett, M. R. Forman, and S. N. Perkins. Energy balance and carcinogenesis: underlying pathways and targets for intervention. Curr. Cancer Drug Targets. 7:484–491 (2007) doi:10.2174/156800907781386623. [PubMed]

54. A. Nareika, Y. B. Im, B. A. Game, E. H. Slate, J. J. Sanders, S. D. London, M. F. Lopes-Virella, and Y. Huang. High glucose enhances lipopolysaccharide-stimulated CD14 expression in U937 mononuclear cells by increasing nuclear factor kappaB and AP-1 activities. J. Endocrinol.196:45–55 (2008) doi:10.1677/JOE-07-0145. [PubMed]

55. C. H. Tang, Y. C. Chiu, T. W. Tan, R. S. Yang, and W. M. Fu. Adiponectin enhances IL-6 production in human synovial fibroblast via an AdipoR1 receptor, AMPK, p38, and NF-kappa B pathway. J. Immunol.179:5483–5492 (2007). [PubMed]

56. P. Pisani, D. M. Parkin, N. Munoz, and J. Ferlay. Cancer and infection: estimates of the attributable fraction in 1990. Cancer Epidemiol. Biomarkers Prev.6:387–400 (1997). [PubMed]

57. D. M. Parkin. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer. 118:3030–3044 (2006) doi:10.1002/ijc.21731. [PubMed]

58. S. Song, H. C. Pitot, and P. F. Lambert. The human papillomavirus type 16 E6 gene alone is sufficient to induce carcinomas in transgenic animals. J. Virol.73:5887–5893 (1999). [PMC free article] [PubMed]

59. B. S. Blumberg, B. Larouze, W. T. London, B. Werner, J. E. Hesser, I. Millman, G. Saimot, and M. Payet. The relation of infection with the hepatitis B agent to primary hepatic carcinoma. Am. J. Pathol.81:669–682 (1975). [PMC free article] [PubMed]

60. T. M. Hagen, S. Huang, J. Curnutte, P. Fowler, V. Martinez, C. M. Wehr, B. N. Ames, and F. V. Chisari. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc. Natl. Acad. Sci. U S A. 91:12808–12812 (1994) doi:10.1073/pnas.91.26.12808. [PMC free article] [PubMed]

61. A. L. Jackson, and L. A. Loeb. The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mutat. Res.477:7–21 (2001) doi:10.1016/S0027-5107(01)00091-4. [PubMed]

62. N. De Maria, A. Colantoni, S. Fagiuoli, G. J. Liu, B. K. Rogers, F. Farinati, D. H. Van Thiel, and R. A. Floyd. Association between reactive oxygen species and disease activity in chronic hepatitis C. Free Radic. Biol. Med.21:291–5 (1996) doi:10.1016/0891–5849(96)00044-5. [PubMed]

63. K. Koike, T. Tsutsumi, H. Fujie, Y. Shintani, and M. Kyoji. Molecular mechanism of viral hepatocarcinogenesis. Oncology. 62(Suppl 1):29–37 (2002) doi:10.1159/000048273. [PubMed]

64. D. Belpomme, P. Irigaray, L. Hardell, R. Clapp, L. Montagnier, S. Epstein, and A. J. Sasco. The multitude and diversity of environmental carcinogens. Environ. Res.105:414–429 (2007) doi:10.1016/j.envres.2007.07.002. [PubMed]

65. Y. S. Guan, Q. He, M. Q. Wang, and P. Li. Nuclear factor kappa B and hepatitis viruses. Expert Opin. Ther. Targets. 12:265–280 (2008) doi:10.1517/14728222.12.3.265. [PubMed]

66. S. Takayama, H. Takahashi, Y. Matsuo, Y. Okada, and T. Manabe. Effects of Helicobacter pylori infection on human pancreatic cancer cell line. Hepatogastroenterology. 54:2387–2391 (2007). [PubMed]

67. K. A. Steinmetz, and J. D. Potter. Vegetables, fruit, and cancer prevention: a review. J. Am. Diet Assoc.96:1027–1039 (1996) doi:10.1016/S0002–8223(96)00273-8. [PubMed]

68. P. Greenwald. Lifestyle and medical approaches to cancer prevention. Recent Results Cancer Res.166:1–15 (2005). [PubMed]

69. H. Vainio, and E. Weiderpass. Fruit and vegetables in cancer prevention. Nutr. Cancer. 54:111–42 (2006) doi:10.1207/s15327914nc5401_13. [PubMed]

70. L. W. Wattenberg. Chemoprophylaxis of carcinogenesis: a review. Cancer Res. 26:1520–1526 (1966).[PubMed]

71. B. B. Aggarwal, and S. Shishodia. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol.71:1397–1421 (2006) doi:10.1016/j.bcp.2006.02.009. [PubMed]

72. H. Nishino, M. Murakosh, T. Ii, M. Takemura, M. Kuchide, M. Kanazawa, X. Y. Mou, S. Wada, M. Masuda, Y. Ohsaka, S. Yogosawa, Y. Satomi, and K. Jinno. Carotenoids in cancer chemoprevention. Cancer Metastasis Rev.21:257–264 (2002) doi:10.1023/A:1021206826750. [PubMed]

73. K. B. Harikumar, and B. B. Aggarwal. Resveratrol: A multitargeted agent for age-associated chronic diseases. Cell Cycle. 7:1020–1037 (2008). [PubMed]

74. G. L. Russo. Ins and outs of dietary phytochemicals in cancer chemoprevention. Biochem. Pharmacol. 74:533–544 (2007) doi:10.1016/j.bcp.2007.02.014. [PubMed]

75. R. Agarwal, C. Agarwal, H. Ichikawa, R. P. Singh, and B. B. Aggarwal. Anticancer potential of silymarin: from bench to bed side. Anticancer Res. 26:4457–98 (2006). [PubMed]

76. E. G. Rogan. The natural chemopreventive compound indole-3-carbinol: state of the science. In Vivo. 20:221–228 (2006). [PubMed]

77. N. Juge, R. F. Mithen, and M. Traka. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci. 64:1105–27 (2007) doi:10.1007/s00018-007-6484-5. [PubMed]

78. L. Chen, and H. Y. Zhang. Cancer preventive mechanisms of the green tea polyphenol (−)-epigallocatechin-3-gallate. Molecules. 12:946–957 (2007). [PMC free article] [PubMed]

79. P. Anand, C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Lett. in press (2008). [PubMed]

80. F. Khanum, K. R. Anilakumar, and K. R. Viswanathan. Anticarcinogenic properties of garlic: a review. Crit. Rev. Food Sci. Nutr.44:479–488 (2004) doi:10.1080/10408690490886700. [PubMed]

81. G. Sethi, K. S. Ahn and B. B. Aggarwal. Targeting NF-kB activation pathway by thymoquinone: Role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mole Cancer Res. in press (2008). [PubMed]

82. Y. J. Surh. Anti-tumor promoting potential of selected spice ingredients with antioxidative and anti-inflammatory activities: a short review. Food Chem. Toxicol.40:1091–1097 (2002) doi:10.1016/S0278-6915(02)00037-6. [PubMed]

83. Y. Shukla, and M. Singh. Cancer preventive properties of ginger: a brief review. Food Chem. Toxicol.45:683–690 (2007) doi:10.1016/j.fct.2006.11.002. [PubMed]

84. M. M. al-Harbi, S. Qureshi, M. Raza, M. M. Ahmed, A. B. Giangreco, and A. H. Shah. Influence of anethole treatment on the tumour induced by Ehrlich ascites carcinoma cells in paw of Swiss albino mice. Eur. J. Cancer Prev.4:307–318 (1995) doi:10.1097/00008469-199508000-00006. [PubMed]

85. C. K. Sen, K. E. Traber, and L. Packer. Inhibition of NF-kappa B activation in human T-cell lines by anetholdithiolthione. Biochem. Biophys. Res. Commun.218:148–53 (1996) doi:10.1006/bbrc.1996.0026.[PubMed]

86. R. A. Lubet, V. E. Steele, I. Eto, M. M. Juliana, G. J. Kelloff, and C. J. Grubbs. Chemopreventive efficacy of anethole trithione, N-acetyl-L-cysteine, miconazole and phenethylisothiocyanate in the DMBA-induced rat mammary cancer model. Int. J. Cancer. 72:95–101 (1997) doi:10.1002/(SICI)1097-0215(19970703)72:1<95::AID-IJC14>3.0.CO;2-9. [PubMed]

87. Y. Nakagawa, and T. Suzuki. Cytotoxic and xenoestrogenic effects via biotransformation of trans-anethole on isolated rat hepatocytes and cultured MCF-7 human breast cancer cells. Biochem. Pharmacol.66:63–73 (2003) doi:10.1016/S0006-2952(03)00208-9. [PubMed]

88. S. Lam, C. MacAulay, J. C. Le Riche, Y. Dyachkova, A. Coldman, M. Guillaud, E. Hawk, M. O. Christen, and A. F. Gazdar. A randomized phase IIb trial of anethole dithiolethione in smokers with bronchial dysplasia. J. Natl. Cancer Inst.94:1001–1009 (2002). [PubMed]

89. S. Shishodia, and B. B. Aggarwal. Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the downregulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene. 25:1463–1473 (2006) doi:10.1038/sj.onc.1209194. [PubMed]

90. R. Ghosh, N. Nadiminty, J. E. Fitzpatrick, W. L. Alworth, T. J. Slaga, and A. P. Kumar. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem.280:5812–5819 (2005) doi:10.1074/jbc.M411429200. [PubMed]

91. K. Sukumaran, M. C. Unnikrishnan, and R. Kuttan. Inhibition of tumour promotion in mice by eugenol. Indian J. Physiol. Pharmacol.38:306–308 (1994). [PubMed]

92. K. Imaida, M. Hirose, S. Yamaguchi, S. Takahashi, and N. Ito. Effects of naturally occurring antioxidants on combined 1,2-dimethylhydrazine- and 1-methyl-1-nitrosourea-initiated carcinogenesis in F344 male rats. Cancer Lett.55:53–59 (1990) doi:10.1016/0304-3835(90)90065-6. [PubMed]

93. M. Pisano, G. Pagnan, M. Loi, M. E. Mura, M. G. Tilocca, G. Palmieri, D. Fabbri, M. A. Dettori, G. Delogu, M. Ponzoni, and C. Rozzo. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer. 6:8 (2007) doi:10.1186/1476-4598-6-8.[PMC free article] [PubMed]

94. S. S. Kim, O. J. Oh, H. Y. Min, E. J. Park, Y. Kim, H. J. Park, Y. Nam Han, and S. K. Lee. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 73:337–348 (2003) doi:10.1016/S0024–3205(03)00288-1. [PubMed]

95. H. P. Deigner, G. Wolf, U. Ohlenmacher, and J. Reichling. 1¢-Hydroxyeugenol- and coniferyl alcohol derivatives as effective inhibitors of 5-lipoxygenase and Cu(2+)-mediated low density lipoprotein oxidation. Evidence for a dual mechanism. Arzneimittelforschung. 44:956–961 (1994). [PubMed]

96. C. J. Rompelberg, M. J. Steenwinkel, J. G. van Asten, J. H. van Delft, R. A. Baan, and H. Verhagen. Effect of eugenol on the mutagenicity of benzo[a]pyrene and the formation of benzo[a]pyrene-DNA adducts in the lambda-lacZ-transgenic mouse. Mutat. Res.369:87–96 (1996) doi:10.1016/S0165-1218(96)90052-X. [PubMed]

97. D. P. Richardson. The grain, the wholegrain and nothing but the grain: the science behind wholegrain and the reduced risk of heart disease and cancer. Nutr. Bull.25:353–360 (2000) doi:10.1046/j.1467-3010.2000.00083.x.

98. H. E. Miller, F. Rigelhof, L. Marquart, A. Prakash, and M. Kanter. Antioxidant content of whole grain breakfast cereals, fruits and vegetables. J. Am. Coll. Nutr.19:312S–319S (2000). [PubMed]

99. J. L. Slavin, D. Jacobs, and L. Marquart. Grain processing and nutrition. Crit. Rev. Food Sci. Nutr.40:309–326 (2000) doi:10.1080/10408690091189176. [PubMed]

100. L. Chatenoud, A. Tavani, C. La Vecchia, D. R. Jacobs, Jr, E. Negri, F. Levi, and S. Franceschi. Whole grain food intake and cancer risk. Int. J. Cancer. 77:24–8 (1998) doi:10.1002/(SICI)1097-0215(19980703)77:1<24::AID-IJC5>3.0.CO;2-1. [PubMed]

101. D. R. Jacobs, Jr, L. Marquart, J. Slavin, and L. H. Kushi. Whole-grain intake and cancer: an expanded review and meta-analysis. Nutr. Cancer. 30:85–96 (1998). [PubMed]

102. L. Marquart, K. L. Wiemer, J. M. Jones, and B. Jacob. Whole grains health claims in the USA and other efforts to increase whole-grain consumption. Proc. Nutr. Soc.62:151–160 (2003) doi:10.1079/PNS2003242. [PubMed]

103. M. Eastwood, and D. Kritchevsky. Dietary fiber: how did we get where we are? Annu. Rev. Nutr.25:1–8 (2005) doi:10.1146/annurev.nutr.25.121304.131658. [PubMed]

104. A. McIntyre, P. R. Gibson, and G. P. Young. Butyrate production from dietary fibre and protection against large bowel cancer in a rat model. Gut. 34:386–391 (1993) doi:10.1136/gut.34.3.386.[PMC free article] [PubMed]

105. J. L. Slavin, D. Jacobs, L. Marquart, and K. Wiemer. The role of whole grains in disease prevention. J. Am. Diet Assoc.101:780–5 (2001) doi:10.1016/S0002-8223(01)00194-8. [PubMed]

106. K. S. Ahn, G. Sethi, K. Krishnan, and B. B. Aggarwal. Gamma-tocotrienol inhibits nuclear factor-kappaB signaling pathway through inhibition of receptor-interacting protein and TAK1 leading to suppression of antiapoptotic gene products and potentiation of apoptosis. J. Biol. Chem.282:809–820 (2007) doi:10.1074/jbc.M610028200. [PubMed]

107. F. H. Sarkar, S. Adsule, S. Padhye, S. Kulkarni, and Y. Li. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev. Med. Chem.6:401–407 (2006) doi:10.2174/138955706776361439. [PubMed]

108. K. W. Lee, H. J. Lee, Y. J. Surh, and C. Y. Lee. Vitamin C and cancer chemoprevention: reappraisal. Am. J. Clin. Nutr.78:1074–1078 (2003). [PubMed]

109. B. A. Ingraham, B. Bragdon, and A. Nohe. Molecular basis of the potential of vitamin D to prevent cancer. Curr. Med. Res. Opin.24:139–149 (2008) doi:10.1185/030079907X253519. [PubMed]

110. F. W. Booth, M. V. Chakravarthy, S. E. Gordon, and E. E. Spangenburg. Waging war on physical inactivity: using modern molecular ammunition against an ancient enemy. J. Appl. Physiol.93:3–30 (2002).[PubMed]

111. G. A. Colditz, C. C. Cannuscio, and A. L. Frazier. Physical activity and reduced risk of colon cancer: implications for prevention. Cancer Causes Control. 8:649–67 (1997) doi:10.1023/A:1018458700185.[PubMed]

112. A. R. Shors, C. Solomon, A. McTiernan, and E. White. Melanoma risk in relation to height, weight, and exercise (United States). Cancer Causes Control. 12:599–606 (2001) doi:10.1023/A:1011211615524.[PubMed]

113. A. Tannenbaum, and H. Silverstone. The initiation and growth of tumors. Introduction. I. Effects of underfeeding. Am. J. Cancer. 38:335–350 (1940).

114. S. D. Hursting, J. A. Lavigne, D. Berrigan, S. N. Perkins, and J. C. Barrett. Calorie restriction, aging, and cancer prevention: mechanisms of action and applicability to humans. Annu. Rev. Med.54:131–152 (2003) doi:10.1146/annurev.med.54.101601.152156. [PubMed]

115. M. H. Ross, and G. Bras. Lasting influence of early caloric restriction on prevalence of neoplasms in the rat. J. Natl. Cancer Inst.47:1095–1113 (1971). [PubMed]

116. D. Albanes. Total calories, body weight, and tumor incidence in mice. Cancer Res.47:1987–92 (1987).[PubMed]

117. L. Gross, and Y. Dreyfuss. Reduction in the incidence of radiation-induced tumors in rats after restriction of food intake. Proc. Natl. Acad. Sci. U S A. 81:7596–7598 (1984) doi:10.1073/pnas.81.23.7596. [PMC free article] [PubMed]

118. L. Gross, and Y. Dreyfuss. Prevention of spontaneous and radiation-induced tumors in rats by reduction of food intake. Proc. Natl. Acad. Sci. U S A. 87:6795–6797 (1990) doi:10.1073/pnas.87.17.6795.[PMC free article] [PubMed]

119. K. Yoshida, T. Inoue, K. Nojima, Y. Hirabayashi, and T. Sado. Calorie restriction reduces the incidence of myeloid leukemia induced by a single whole-body radiation in C3H/He mice. Proc. Natl. Acad. Sci. U S A. 94:2615–2619 (1997) doi:10.1073/pnas.94.6.2615. [PMC free article] [PubMed]

120. V. D. Longo, and C. E. Finch. Evolutionary medicine: From dwarf model systems to healthy centenarians? Science. 299:1342–1346 (2003) doi:10.1126/science.1077991. [PubMed]

The Efficacy of Sodium Bicarbonate in the Treatment of Medically Diagnosed Breast Cancer

Micrographs Indicating Breast Cancer Using Thermography (Left) and UltraSound with Doppler (Right) Showing a 14.2 cm Tumour
Micrographs Indicating Breast Cancer Using Thermography (Left) and UltraSound with Doppler (Right) Showing a 14.2 cm Tumor

PubMed

US National Library of MedicineNational Institutes of Health

Br J Cancer. 1999 Jun;80(7):1005-11.

Enhancement of chemotherapy by manipulation of tumour pH.

Raghunand N1, He Xvan Sluis RMahoney BBaggett BTaylor CWPaine-Murrieta GRoe DBhujwalla ZMGillies RJ.

Author information

Abstract

The extracellular (interstitial) pH (pHe) of solid tumours is significantly more acidiccompared to normal tissues. In-vitro, low pH reduces the uptake of weakly basic chemotherapeutic drugs and, hence, reduces their cytotoxicity. This phenomenon has been postulated to contribute to a ‘physiological’ resistance to weakly basic drugs in vivo. Doxorubicin is a weak base chemotherapeutic agent that is commonly used in combination chemotherapy to clinically treat breast cancers. This report demonstrates that MCF-7 human breast cancer cells in vitro are more susceptible to doxorubicin toxicity at pH 7.4, compared to pH 6.8. Furthermore 31P-magnetic resonance spectroscopy (MRS) has shown that the pHe of MCF-7 human breast cancer xenografts can be effectively and significantly raised with sodium bicarbonate in drinking water. The bicarbonate-induced extracellular alkalinization leads to significant improvements in the therapeutic effectiveness of doxorubicin against MCF-7 xenografts in vivo. Although physiological resistance to weakly basic chemotherapeutics is well-documented in vitro and in theory, these data represent the first in vivo demonstration of this important phenomenon.

PMID: 10362108 PMCID: PMC2363059 DOI: 10.1038/sj.bjc.6690455

Ariel Green reversed her medically diagnosed breast cancer with 3 cancerous tumors living the pH alkaline diet!

One of the 3 golf ball sized lumps in my breast that disappeared after changing to a pH alkaline diet. 

The following is Ariel Green’s personal story of reversing her cancerous breast condition involving 3 tumors without surgery, chemotherapy and radiation!

“Do you have a health condition you think is incurable? Do you want to lose weight and keep it off permanently? Do you want to reverse aging? Do you do everything you can to be healthy but still don’t feel quite right? The alkaline diet could cure all this and more; but is it too good to be true?”

“The alkaline diet is quickly becoming popular with backing of celebrates like Kate Moss, Gwyneth Paltrow, Jennifer Aniston, Linda Gray, Bill Clinton, Larry Hagman, and Kirsten Dunst. In 2003 Cris Carr, former Budweiser girl, made a move documentary on her battle with cancer and how she reversed the cancer with an alkaline diet. You may have heard about the alkaline diet on the news or in one of several interviews on the Oprah Winery show. You can find testimonies of people all over the internet that completely reversed every day illnesses as well as cancer, HIV MS, diabetes type1&2, and other chronic diseases.”

“How does it work? The alkaline diet works on the premise that our bodies are self healing. In order for the body to heal itself it needs the right tools one being the correct pH, others being sufficient nutrients, water, and exercise. The main thing that affects our pH is our diets. By eating alkalizing foods and minimizing acidic foods our bodies can begin to heal, prevent sickness, and help protect from external acid factors like stress and radiation. To maintain a good pH in our bodies we need to eat at least 70% alkaline foods and no more than 30% mildly acidic foods. Alkaline foods include most cooked and raw vegetables, some beans, and few fruits, grains, & nuts. Acidic foods include meat, dairy, sugar, processed foods, coffee, and most fruits, grains, and nuts.”

“Sound too hard? Well, you don’t have to jump right in. Most people have better results by making slow gradual changes to their diet. Some people only need to make a couple of small changes to start seeing results. There are also many tasty alkaline versions of acidic foods; so don’t worry about felling deprived.”

“So does the alkaline lifestyle and diet really work? Apparently it does from all the testimonies on the internet. I tried it myself in 2006 when I found out I had three breast tumors that my doctor told me had to be surgically removed. Within six months the cancerous tumors were gone, and so were my allergies, chronic knee & back pain, and my problem with vertigo that my doctors could not explain or treat. I also have more energy and I don’t get colds anymore. I have been on the pH alkaline diet since 2006 and continue to maintain excellent health. I have met many people that have completely reversed their health problems with the pH alkaline diet. I also know a couple of people that it did not work completely for but it did drastically improve their health. Many people give up on alkalizing before it has a chance to work because they feel deprived. They think they can only eat salad; but this is not true.”

“Supplementation is also important as there are some vitamins and minerals than can be hard to get on an alkaline diet. There are also many supplements that can make alkalizing quicker and easier. The pH alkaline diet can be hard and take a long time to get results if you don’t know enough about it. So it is best to read up on it and get a good pH coach. There is very little clinical research on the pH alkaline diet and its effects on specific disease conditions. However, an article published in PubMed says there supporting research that shows the pH alkaline diet can support health and reverse disease but more research is needed http://www.ncbi.nlm.nih.gov/pubmed/22013455.”

“It will be many years before clinical research can be done on the pH alkaline diet with every health problem. So it is best to consult a health professional before changing your diet especially if you have a chronic disease.”

“Some health problems with supporting clinical studies on the alkaline diet & treatments include cancer, low back pain, bone loss, and increased lean tissue mass in older adults:”

“In a study published in PubMed a high pH treatment was tested on over 30 humans with cancer. In each case the cancer disappeared. http://www.ncbi.nlm.nih.gov/pubmed?term=6522424

Supplementation with alkaline minerals reduces symptoms in patients with chronic lower back pain. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195546/?tool=pubmed

“Increasing the alkaline content of the diet may slow bone loss in healthy older adults. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2630872/

“Alkaline diets favor lean tissue mass in older adults. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597402/

 

To learn more read and share, The pH Miracle book 1, The pH Miracle revised and updated book 2, The pH Miracle for Cancer and the newly released book The Cancer Solution by Robert O. Young C PT, MSc, DSc, PhD, Naturopathic Practitioner

 http://www.phoreveryoung.comhttp://www.amazon.comhttp://www.phmiracle.com

Tom Brady’s pH Alkaline Lifestyle and Diet

New England Patriots quarterback Tom Brady — a five-time Super Bowl Champion and three-time NFL MVP — is widely considered to be one of the greatest athletes of all time. Lately, however, Brady has been following an alkaline lifestyle and diet.

In September 2017, Brady released his book, The TB12 Method: How to Achieve a Lifetime of Sustained Peak Performance. In this book, Brady detailed exactly what he eats every day. One main feature of his diet is liberal amounts of alkaline foods and liquids.

 

In the mornings, Brady doesn’t eat a full meal. When he wakes up at 6:00 am, he drinks 20 ounces of alkaline water infused with electrolytes, including sodium, potassium, magnesium and calcium. He then drinks a smoothie and/or juices containing alkalizing grasses, vegetables, fruit, nuts and seeds. Two hours later, he has another glass of alkaline electrolyte-infused water, and a post-workout protein shake. Brady claims to drink somewhere between 12 and 25 glasses of alkaline water per day.

 

He also heavily encourages snacking. He usually snacks at around 11:00 am, just before lunch. For lunch, Brady will usually have a piece of fatty fish like salmon and a lot of green vegetables. In the afternoon, he may have another protein shake or protein bar, and around 6:00 pm, Brady eats dinner, which, again, consists of mostly green vegetables.

His book provides recipes for green juices, green soups, green salads, and a few carbohydrate recipes such as his pasta dish — which is odd, considering that he supposedly rarely eats carbs. But even Brady treats himself sometimes. He doesn’t often eat dessert, but he does give a recipe for his famous alkaline avocado ice cream.

 

His book also contains several alkalizing rules for eating. Brady won’t eat carbohydrates and protein together. He recommends eating carbs or protein with green vegetables instead, as he knows that this is better for assimilation and elimination.

Brady’s chef Allen Campbell says that 80 per cent of his diet is green vegetables and the rest of his diet is grass-fed organic steak and wild salmon.

Brady follows what he refers to as an alkaline lifestyle and diet created by Robert O. Young PhD, in order to minimize muscle inflammation caused by the buildup of lactic acid in the interstitial fluids of the Interstitium (see illustration below). This entails limiting ‘acidifying foods,’ which mostly includes starchy foods like potato, pasta, bread and ALL dairy products.

What is even more interesting is the list of acidic foods that Brady doesn’t eat. For Brady, caffeine, white sugar, white flour, dairy, and some nightshade vegetables —  eggplant and mushrooms — are completely off the table. He also won’t consume olive oil if it’s used in cooking — but he’ll have it raw. And he won’t eat high sugar fruit, unless it’s in a smoothie.

Since there are profound benefits with Brady’s pH alkaline diet, and it is clearly sustaining his play on the field, there a 100’s of specific health and fitness benefits of the pH alkaline lifestyle and diet which are backed by published scientific evidence.

 

He claims that limiting acidic foods helps control the body’s pH balance. What one eats, drinks, breaths and thinks has a huge effect on the body fluids, including the blood plasma, interstitial and intracellular fluid pH which is ideal at 7.365.

Brady also knows that the alkaline lifestyle and diet can decrease the lactic acids that causes inflammation in the body, leading to ALL sickness and disease, including connective tissue disorders that can end an athlete’s career.

 

At 41 years young, which is considered ancient in football years, Brady says he wants to play at least another five years. While he is certainly capable, his pH Miracle lifestyle and diet will be a major reason he WILL achieve HIS goal.

To learn more about the pH alkaline lifestyle and diet read The pH Miracle revised and updated – http://www.phoreveryoung.com

To learn more about the lifestyle and attend a pH Miracle Retreat in Marbella, Spain or Sardenia, Italy, go to: http://www.phmiracleretreat.com

SHOCKING STUDY IN 2016: Chemo Kills up to 51% of Patients within 30 days

cause of death

For decades now, many scientists have been raising red flags that chemotherapy can oftentimes do more harm than good, and in a surprisingly large number of cases, it simply does not work.

Dr. Hardin B. Jones, a former Professor of Medical Physics and Physiology at Berkeley, California, studied the impact of chemotherapy, radiation, and surgery on the survival rates of cancer patients, and found that instead of prolonging lives, these treatments actually make the patients die almost four times sooner. This was found more than 40 years ago, and yet not much has changed in the way the hospitals treat cancer.

For terminal patients as well, a 2016 study in the peer-reviewed journal of the American Cancer Society CANCER found that living at home instead of being treated at the hospital prolonged their lives by about 45%.

And now, a new study was just published earlier this month that analyzed 30-day mortality rates caused by the treatment itself: chemotherapy and chemotherapy plus radiation.

Cancer Study: Early Mortality Rate Caused by Chemotherapy

The study, published in The Lancet’s Oncology, looked at 23,228 breast and 9,634 lung cancer patients in England.

download-58

The results showed high death rates linked to the treatment, increased use of SACTs (systematic anticancer therapies – cytotoxic chemotherapy). The researchers stated it was due “poor clinical decision making.”

“Patients dying within 30 days after beginning treatment with SACT are unlikely to have gained the survival or palliative benefits of the treatment, and in view of the side-effects sometimes caused by SACT, are more likely to have suffered harm,” states the study.

The researchers write that while there a few patients who may have benefited from SACTs, there were too many who were harmed by it, or even killed by the treatment.

chemotherapy-448578_960_720

In 2014 , the year the study was researched, almost 1,400 patients in England died within 30 days of their first chemotherapy treatment. In some hospitals, the mortality rate was significantly higher than in the others: up to 51% of breast cancer patients died in Milton Keynes (although the number of total patients was small), and up to 29% of lung cancer patients died in Lancashire Teaching Hospitals.

“Simply reducing doses of or avoiding SACT altogether would reduce or eliminate instances of treatment-related early mortality.”

The study was done after noticing a clear lack of data analyzing the risk versus gain of using chemotherapy and mortality rates caused by it in the first 30 days of treatment. As the researchers state, this is the first time this topic has been brought up and investigated at a national level.

The “million dollar questions” (or perhaps “billion dollar” since this is the cancer treatment industry we’re talking about) raised by the researchers included: is chemotherapy use still advocated based on small clinical studies — most sponsored by the pharmaceutical industry?

And it has never been fully studied how well it works in a real hospital setting?

Do Most Hospitals Know What They Are Even Doing?

The study points out two problems. One is that mortality rate is high due to poor clinical decisions. Perhaps because in most hospitals chemotherapy is given in a one-size-fits all manner or a fixed-dose with no consideration to a patient’s health history, and characteristics such as weight and age.

In England’s database, it was found that for many patients, the doctors did not include why the chemotherapy was given, and the overall health of the patient and the severity of their cancers was never recorded.

Both of these factors, as the study points out, could significantly change the outcome for these patients.

In America, another study found that doctors gave palliative chemotherapy to terminal cancer patients, and in at least two-third of cases, the patient did not know that the treatment could not cure them, but it only alleviated some symptoms, such as pain.

Knowing that the treatment could not help them in the end, would they have searched for alternative options that may have worked better?

Death Rates from Chemotherapy Are Rarely Properly Documented

The second issue the study found is that mortality rates are hard to analyze because they are not well or properly recorded.

In England’s case, many dates of deaths were simply missing from the national database. Some were documented twice, and the two dates did not match.

 

800px-Death_certificate_of_John_Otto_Siegel,_front_view

In America, the national statistic of cancer mortality comes from the death certificates. This is what the National Center for Health Statistics (NCHS) along with the doctors use to see how many people are die from cancer, and how many people die from the treatment. Unfortunately, the National Cancer Institute reports “cancer” as the cause of death for almost all cancer patients, regardless of what actually caused it, as pointed out in a 2002 article.

This article raised concern that “cancer death rates are systematically underestimated, in that many patients who die as a result of cancer treatment do not have cancer recorded as the underlying cause of death.”

For example, they studied patients who died within one month after a cancer-surgery between 1994 and 1998, and 41% of these deaths were not properly recorded. The authors write that cancer treatment was the likely cause of death.

“…Many deaths subsequent to 1 month after cancer-directed surgery may be similarly miscoded.”

Unfortunately, even though the study points out that many death certificates quote some condition other than cancer as the cause of death (such as liver failure), they want the cause of death to be just “cancer.” That would lead to further incorrect data as many patients do die from cancer treatments, and liver failure that would not happen from cancer, is often caused by the toxic chemo drugs. But what this study does show us, is that because of a 1999 revision in the International Statistical Classification of Diseases and Related Health Problems (ICD), instead of a cancer or cancer-related death, death certificates now have to show the “underlying” cause of each death, such as: thromboembolism (blood vessel obstruction), infections, organ failures, and hemorrhage (excessive bleeding).This leads to improper classification and underestimated cancer death rates and statistics.

How many patients die from the treatment instead of cancer?

That is hard to say until every doctor and hospital begins classifying the causes of deaths correctly. Until then, it is important to keep studies like this in mind when considering pros and cons of starting a chemotherapy treatment.

There are more and more alternative options out there – and for many, they do work. (Just look up testimonials from the Nutritional Oncology Research Institute, or even studies on carotenoids antioxidants derived from natural sources, and even IV curcumin and sodium bicarbonate).

“I think it’s important to make patients aware that there are potentially life threatening downsides to chemotherapy. And doctors should be more careful about who they treat with chemotherapy,” writes one of the study’s co-authors, Professor David Dodwell, Institute of Oncology, St James Hospital, Leeds, UK.

This article is for informational purposes only. Consult a doctor before beginning any treatment. See our full disclaimer here. 

Want to learn more about the most effective ways to prevent and reverse cancer?  Read The pH Miracle revised and updated and The pH Miracle for Cancer –

https://www.amazon.com/Robert%20O.%20Young/e/B001ILKCSU/ref=la_B001ILKCSU_pg_1?rh=n%3A283155%2Cp_82%3AB001ILKCSU&sort=author-pages-popularity-rank&ie=UTF8&qid=1528305583

Screen Shot 2018-06-07 at 8.31.48 AM.png

References

1) https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(16)30383-7/abstract?code=lancet-site

2) https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2360753/

3) https://althealthworks.com/8088/berkeley-scientist-cancer-patients-live-4x-longer-by-refusing-chemotherapyyelena/

4) https://academic.oup.com/jnci/article/94/14/1044/2519814

5) Alkalizing Nutritional Therapy in the Prevention and Treatment of Any Cancerous Condition – https://www.amazon.com/Alkalizing-Nutritional-Prevention-Treatment-Cancerous-ebook/dp/B01JKCXJRY/ref=la_B001ILKCSU_1_14?s=books&ie=UTF8&qid=1528429047&sr=1-14&refinements=p_82%3AB001ILKCSU

6) The pH Miracle for Cancer: Discover the Truth about the Cause, Prevention, Treatments, and Reversal of ALL Types of Cancers – https://www.amazon.com/PH-Miracle-Cancer-Prevention-Treatments-ebook/dp/B01JJX1Q8S/ref=la_B001ILKCSU_1_6?s=books&ie=UTF8&qid=1528428158&sr=1-6&refinements=p_82%3AB001ILKCSU

7) Using Sodium and Potassium Bicarbonates in the Prevention and Treatment of All Sickness and Disease – https://www.amazon.com/Potassium-Bicarbonates-Prevention-Treatment-Sickness-ebook/dp/B01JLHJ1Y8/ref=la_B001ILKCSU_1_30?s=books&ie=UTF8&qid=1528429161&sr=1-30&refinements=p_82%3AB001ILKCSU

The True ‘pH’ of Foods

The Alkaline and Acidic Food Chart

Robert O Young’s CPT, MSc, DSc, PhD, Naturopathic Practitioner shares his work, research and discoveries on the ‘true pH values’ of many alkaline and acidic foods. Dr. Young’s ‘true pH values’ of foods and liquids are listed in his book Sick and Tired. The charts below are a simplified version, based upon testing the whole food before burning the food at high temperatures and then measuring the remaining mineral ash. This is critical to understand, because the FDA determines ‘pH values’ by burning the food at 5000 degrees F to simulate the effects of digestion in the stomach when it combines with the hydrochloric acid. All that remains for determining a ‘pH value’ is a mineral ash, without the consideration of ALL acidic or alkaline components, such as the water, sugar and enzyme content. Thus, this procedure used by the FDA for testing common foods gives a ‘false pH value’. This is the reason you cannot rely upon the ‘pH values’ of the FDA food charts.

Conversely, Dr. Young’s method of testing ‘pH values’ includes all the acidic and alkaline components that are not evaluated by the FDA, such as water, sugar and enzymes. Because these components are included in determining the ‘pH values’, they may be considered more accurate than the ‘pH values’ provided by the FDA.

The following is a simplified version of the “Alkaline-Acid Food Chart” that was taken from the revised and updated pH Miracle book (2010). To find a more comprehensive list of specific ‘pH values’ of the foods listed below, refer to Dr. Young’s book, Sick and Tired.

To learn more about alkaline foods and drinks and for great alkaline recipes, read Sick and Tired, The pH Miracle, and The pH Miracle Revised and Updated www.phoreveryoung.comwww.drrobertyoung.com,www.phmiracleretreat.com

From Terminal Cancer to Courage and a Self-Cure

Inger Hartelius with her Daughter Tea Hartelius
Inger Hartelius with her daughter Tea Hartelius
In 2011, I had the unique pleasure of meeting Inger Hartelius at the Rancho del Sol/pH Miracle Center in Valley Center, California, and had the chance to follow her journey from diagnosis to recovery from terminal cancer to courage to her self-cure. It is an honor for me to pass along her story and personal journey. We all have a choice, a personal choice in terms of health, wellness, energy and fitness. Please take the time and read Inger’s enriching and empowering story that I believe will make you wiser and possibly change your life or even save your life –  If not your life maybe the life of a friend or a loved one!

This is how I regained my future from terminal metastatic lung cancer:

By Inger Hartelius,

This article was initially published in the magazine ”Tidslerne”, (Danish Cancer Association Tidslerne) in January 2018.

 

I was diagnosed with pulmonary adenocarcinoma lung cancer in one of my lungs and lymph nodes near the esophagus in July, 2011. I chose to say NO to chemo and NO to radiation and today – six and a half years later after a life threatening terminal diagnosis. Today, I have no evidence of cancer in anywhere in my body.

In a small dark office, without windows, at the Pulmonary Department in Roskilde Hospital, my husband and I were informed that on the basis of tests from a PET-CT scanning, they had found lung adenocarcinoma, stage 2, R7 og 4L, T1bN3MO, a diagnosis so severe that the doctors in an interdisciplinary conference had booked me for chemotherapy and radiation at Herlev Hospital already the following week.

As written in my medical record, I was “appropriately in tears”, while saying no thank you to the offer and later also to an orientation on the treatment possibilities, side effects and potential consequences of the hospitals offer. An offer which, according to the doctor, could prolong life – not cure. And, it was a matter of a short extension of lifespan, which was also confirmed by the statistical evidence I asked for. Potentially it was a matter of just a few months.

Six and a half years without any signs or symptoms of cancer

Even before I got the final diagnosis, I wasn’t considering chemotherapy or radiation. Between the scan and the results I researched into alternative treatments.

Today I have no evidence and no symptoms of metastatic lung cancer. A CAT scanning in April, 2016 confirmed my belief of being cured of terminal metastatic pulmonary adenocarcinoma lung cancer. (No one has ever been cured of metastatic pulmonary adenocarcinoma lung cancer)  In many ways I feel better than before I was diagnosed. I am 64 years old – and I believe that I have many more healthy years ahead of me.

Did they give the correct diagnosis? The doctor who gave me the results of the scan in April, 2016 asked himself this out loud while reading my medical journal. Am I just one of the lucky ones who indescribably doesn’t follow the statistics (approx. 1 year lifespan post diagnosis and with treatment), or is what I chose to do instead of chemo and radiation the reason why I am still alive, health and cancer free? Who knows?

Extreme bravery to say yes to chemotherapy

Though it is difficult to know for sure why I have survived cancer it is important for me to tell the world that some of us actually survive cancer without the conventional treatments and also therefore avoid the medical side effects, one of which is death – and gaining many positive results, which we choose instead.

Many have asked me: How did you dare? This question actually surprises me because this wasn’t how I was thinking. Many tell me they think I am brave.

Before the diagnosis I thought that the people who chose the conventional treatments were extremely brave. How can they let their bodies be filled with chemo with all its horrible side effects, which often result in injuries both inside and outside the body, including death? To entirely trust the doctor’s hasty decisions on standardized cancer treatment programes, without being able to see what is happening and take control over one’s own life.

“Put your life in the hands of your doctor”

If I only had a few months to live I definitely didn’t want to spend it in a hospital. On top of that I had first hand experience seeing how chemotherapy didn’t only treat, but resulted in days and weeks of deathly side effects – potentially lasting the rest of life – sometimes with death as a consequence; maybe the treatments would also shorten my lifespan.

I couldn’t do it, as a calming nurse suggested after a consultation with the doctor: “Put your life in the hands of your doctor”. I would rather not!

I am very thankful for the nurse saying this to me. It was at a moment where I was consumed by the confusion of the diagnosis and thoughts of never getting to experience having grandkids, that something inside me became connected. I got myself together, dried my eyes, stood up straight and took my final decision. Either I would die from cancer or I would find another way to be cured!

A long, conventional treatment program wasn’t something I, nor my family, would let myself go through, instead I would look for other possibilities. I left the hospital in shock, but with a decision to go to an alternative way of treating my cancer.

”Tidslerne” (Danish Cancer Association) took time to listen

Already, when I was told I needed to have a biopsy taken from the area in my lungs and the swollen lymph nodes, I got in touch with a volunteer at the Cancer Association ”Tidslerne”. I had Googled the risks of taking the biopsy, and was aware that there was a 25% risk that the cancer would spread afterwards.

No-one at the hospital had informed me of this. That is why I needed to talk to others. Simultaneously, the conversations strengthened me in my belief of following my gut feeling and pursuing alternative treatment methods for my cancer. Many others had done this before me with great results.

Starting to find a solution

I read the book: Andreas Moritz: “Cancer is not a disease. It is a survival mechanism”. Some other possibilities were META-medicine, healing and Dr. Robert Young [i], who is known for having a highly effective approach to treating cancer. (over 80% success with terminal metastatic cancer and over 90% success with Stage 1, 2 and 3 cancers)

In Denmark I found advice and guidance by Dr. Claus Hancke, MD in Lyngby, who suggested high dose of Vitamin C intravenously as well as supplements of vitamins and minerals. I also consulted Frede Damgaard’s clinic of complementary treatment in Aarhus. Their key focus is on nutritional guidance supplemented with natural medicine/herbs, vitamins and minerals. His recommendations were built on extensive analysis of my body’s resources and weaknesses.

With my family in California 

Descriptions of Dr. Robert Young’s live and dry blood tests combined with focus on the body’s resources and regulation of the body’s pH-levels is what spoke to me. I wrote an email to him and was later encouraged to call him. In the following conversation with one of Dr. Young’s assistants, I was encouraged to bring my husband and kids with me and come to California. I was lucky. There was a house available for us if we could come within a couple of days. They believed that with the serious diagnosis I had, I would have a greater chance of survival if i invested in a retreat at Dr. Young’s pH Miracle Center, in Valley Center, California.

 

It was a miracle: Being with my husband, kids and my son’s girlfriend was fantastic. Being in an avocado and grapefruit plantation in California and living in a house feeling like I was in the middle of a great dream during my life’s biggest nightmare. While we were there I asked myself many times: Am I dreaming?

Because a couple of days ago I was getting my head around the concept that I was going to die. Instead I was now in paradise, being inspired to change my mindset of why people get cancer. At the same time we were informed daily on how to live according to Dr. Young’s recommendations, to prevent cancer and get rid of it by building up the body’s resources, so that it will not accumulate cancer cells.

Live and dried blood tests

 

Dr. Young’s blood tests showed that I should not fear dying from that cancer which the doctors had discovered in my body. I had many resources I could activate and through a whole body cleanse I could rid my body of this cancerous condition.

The blood test took place in a large teaching room where there was plenty of space for all five of us and one of Dr. Young’s assistants. We were surrounded by posters and other interesting teaching materials. A small prick in the finger was enough to make a live blood test, and the seven drops of blood dried on a glass plate. I sat by Dr. Young and his computer and followed along. The others saw the tests on the wall. He placed the blood from my finger on the glass plates and placed them under a microscope connected to a computer and a projector.

It was fantastic getting to see the tests instantly with my own eyes. There was no waiting time and Dr. Young let me in on how he interpreted the tests. It was personal and caring; “Try to see the many regular round blood cells floating freely around each other surrounded by clear liquid. The more of these there are and the clearer the liquid, the better the blood’s ability is to clean and transport oxygen to your body. The liquid between the cells shows no sign that the current cancer is a serious threat to your body. Here some of the cells are aggregating, which is a sign of dehydration. And the shape of the cells here shows that you need more nutritional oils.”

 

In the dries blood tests Dr. Young was focused on the patterns in which the blood coagulated. Experience shows that patterns can tell a lot about a person’s health and current challenges and resources. In my tests it was clear that I had to focus on my immune system and my digestion. On top of that there was a sign that I had had a lot of heavy metals in my blood – maybe because of the long period in my life where I ate a lot of fish.

Alkaline plan against terminal cancer 

Along with the blood tests I tested the pH levels of my saliva and my urine every morning and night. There was space for improvement. The pH levels of my saliva and urine were between 5 and 6. It should in both cases be a minimum of 7.4, a little higher than the pH levels of the blood.

From the blood tests and the pH levels Dr. Young made a protocol, which I followed, telling me which special supplements I should take with my alkaline meals[ii] as well as which activities I should carry out.

First and foremost I had to drink approximately 4 liters of liquid every day as well as a glass of salt water every morning and night. The liquid should consist of juice from vegetables and water with high pH levels, preferably with freeze dried vegetable powder and liquid chlorophyll. [iii]. I also had to stay physically active on a daily basis and partake in various therapeutic treatments.

 

It was very in depth and I have to admit it was a little hard to grasp it all. Luckily my son was good at helping me stay on top of it all so I could go in depth with it all one step at a time.

After the blood test we moved our focus from the cancer in my body to building up healthier and a more well functioning body. An exciting journey into the pH Miracle lifestyle. We focused on how we could keep our blood alive and healthy while strengthening the body’s ability to maintain a high pH level. It was all about what we eat. what we drink, what we breath, what we think, as well as how we challenged ourselves both physically and mentally.

Screen Shot 2018-03-11 at 8.31.02 AM

The days were full of exciting activities: Younga Yoga in the morning followed by Dr. Young’s workshop, breakfast with delicious avocado-smoothies, juice from vegetables and almond milk, food demonstrations, time in an infrared sauna, salt baths and activities on the center’s many training machines as well as hiking and running trips in the area.

A life affirming place

In Dr. Young’s plan there was a therapeutic colonic hydrotherapy with 20 liters of liquid consisting of water with high pH-levels, powder of freeze dried alkaline vegetables, salt and chlorophyll. I got a minimum of one hour’s massage focused on activating my lymphatic system.

At home we started preparing alkaline food and I started training to run 5 kilometers. In the beginning it was just a small run where I live. I was exhausted. Later it was longer trips along the beach.

To make it easier to prepare the food we invested in an effective blender and a juicer. We also got an infrared sauna, a bathtub (for salt baths), a rebounder (to jump on), a colonic board (to frequently clean my colon with 20 liters of water) as well as a pH Miracle water ionizing machine. The cleansing ionized water played an especially big role in the change I could see in the pH levels of my saliva and urine – both in the morning and the evening. The pH levels rose steadily and landed somewhere between 9 and 10 in the urine and 7 and 8 in my saliva. The values are still at this level.

 

I had consultations with Dr. Pernille Knudtzon, MD, a psychologist and reflexologist. Dr. John Arnved, MD at the Lung- and Allergy clinic in Copenhagen followed me and tested my lungs frequently as well as my allergy reaction to mold. My own doctor followed my progress with blood tests to keep an eye on the mineral and vitamin levels in my body.

I was busy and sometimes completely overwhelmed with all the changes in my body and the doubt: Was it the right thing, I had started? Why was I still losing weight? Would I be cured? Just think… I didn’t trust my body completely; maybe the cancer was growing despite my hard work to get rid of it. The support of family, friends and the people whom I contacted for help was very important to me.

Frequent follow up meetings

After three months I had two medical thermography scans with a month’s time between each. The results were quite shocking. The American doctors analysed the pictures and recommended that I start conventional treatment as the pictures showed that the cancer may have spread.

I decided to go to Spain to see Dr. Pernille Knudtzon, MD, who would supplement what I could do myself to be cured, with a week of intensive cleansing and building up of the body and soul. The experiences of the week with Pernille Knudtzon gave me new tools to tackle my thoughts and feelings so they weren’t in the way of my work on getting healthy. After a week in Spain with my sister I returned home with renewed courage. [ii]

In April, 2012 Dr. Young had a retreat in Como, Italy (pH Miracle protocol is now available at Forte Village, Sardegna, Italy) where I had the chance to regain inspiration and support to intensify my healing process. My husband and daughter went with me and we had a fantastic week. My blood tests again showed a big improvement, so Dr. Young recommended that I continue my process to take care of myself and my health.

In September of the same year Dr. Young invited me to another retreat in Como, Italy to give me another chance to be thermographically scanned and get an ultrasound by his partner, Dr. Galina Migalko (MD, NMD, RDMS).[iii] Neither test methods are harmful to the body. The tests showed, to everyone’s pleasure, that I had built up my immune system. It was now a year since I received the diagnosis and none of the tests showed any trace of cancer in my body. I had no symptoms either and had more energy and was starting to gain weight again.

28951932_2026221690978074_2590423586761634031_n.jpg

”10 Steps to Perfect Health 2012”

When I came home, I decided that I wanted to share my journey. I needed to share my experiences with others to confirm to myself that it was a success. It could motivate me to continue living an alkaline lifestyle as taught by Dr. Young.

 

To stand in front of a large group of people and talk about how the lifestyle I had chosen had played a role in me being healthy, compelled me to continue. I knew now that ensuring the daily maintenance of my health was the best way for me to prevent the cancer from returning to my body. See the YouTube video: ”10 Steps to Perfect Health 2012”, a film about the workshop I had at the National Museum in Copenhagen with Paulo Fernandes, one of Dr. Young’s students.

In the summer of 2012 my son and sister took part in a course in California where Dr. Young was teaching his experiences and theories behind his way of analyzing living and dried blood tests. They both brought a microscope with them home so that they could connect to their laptops. I could now sit with them and see my own blood. They got very good at analyzing it, which gave us all the possibility to frequently keep an eye on how our bodies reacted to different challenges and changes in our lives.

All that fear for no reason!

When I saw my blood tests after an appendicitis which ended in a burst appendix, it was clear that I now had to invest in my cleansing activities. In this period I started coughing, losing weight and sweating again. The fear of the intensive operation meant that again there would be cancer in my lungs. Cancer with renewed power. I felt weak and powerless.

The family was again there to help me get back on track. My blood tests showed progression. An ultrasound scan at the Scanning clinic in Herlev showed that my inner organs were healthy and in good shape. At the same time the test that I had done at the Allergy and Lung clinic in Copenhagen showed that my lungs were not seriously affected by the cough. Dr. John Arnved, MD, dared to say that such positive results wouldn’t be there if the cancer was growing in my lungs again. So he encouraged me to start up my runs by the beach again so I could cough up what was irritating my lungs. Fantastic advice – I ran again for my life and coughed a lot by the beach for a couple of days. After a week’s time I discovered that I wasn’t coughing anymore! Wow! All this fear for no reason.

The fear of dying died down

As previously said I renounced contact with the hospital. I knew from what I had read that it was very hard for the body to be scanned. I was also very aware of the psychological challenges. Both the experience of being in the scanner, the waiting time between the scan and the results as well as the thick atmosphere I experienced with the results coming in. It is not easy to have hope for life in such a universe. In the big picture though I managed with help from all those who believed in my decision. The time periods in the beginning where I had mistrust and ideas about how it would be to die from lung cancer died out, so in 2016 I built up the courage to be CT scanned. I wanted to know if such a test also confirmed that I was cured from metastatic pulmonary adenocarcinoma lung cancer..

CT-scan 5 years later

The CT scan in 2016 showed that the area which was compressed in my lung was still the same size, and there were also no more swollen lymph nodes. According to the doctors there were scars from the original cancer in the lung.

There was also a little compression of 8 millimeters further down the lungs. They wanted to follow the little spot, so I had some more tests done a couple of months later. The next test showed that there was still no change, not even in the small 8mm compression.

After this I again said no thank you to the hospital’s offer for further investigations. When the compression hadn’t changed in over five years and there were no signs of enlarged lymph nodes or signs of cancer in any other parts of my body, I didn’t wish to provoke my body with more physically and psychologically stressful investigations.

My doctor, Thomas Børresen, MD, wrote this, which I look at when I am in doubt:

“The patient sought help from Dr. Robert Young, Valley Center, CA, who started a program, which didn’t only give complete remission but continuous remission of the patients cancer, which is remarkable and unique and can only be related  to the program. Normal expected survival rate with conventional medical treatment and radiation is 0%.”

I no longer have life threatening metastatic cancer in my body – and I now also have documentation from conventional sources saying it was the right thing to do to follow Dr. Young’s pH Miracle Protocol.

Alkaline as healing and a lifestyle

I still want to continue living an alkaline lifestyle, not because I need to, but because I experience that it is life affirming on many levels. It gives me a special energy and courage, which I in no way wish to lose.

It is fantastic and strengthens my belief that I still have many more healthy years ahead of me. I get a lot of time to be there for those whom I love and those I can share an active work life with. I also have the belief that there will be many years, where I can be the grandmother of my grandchildren when they come one day.

I have regained my future and will enjoy every day of it.

Inger Hartelius

References

[1] Robert Oldham Young CPT, MSc, DSc, PhD, ND, is a naturopathic practitioner and not a medical doctor. The titles after his name represent different doctoral graduations he has obtained in the USA where he has, among other things, studied nutrition, hematology, microbiology and chemistry. As a practitioner he has worked as an American Naturopath. He is also the author of 75 books published in 29 different languages, 20 peer-reviewed published articles, over 3000 blog published articles and hundreds of youtube videos concerning alkaline nutrition, lifestyle, detoxification, human pH research and chemistry of the blood and interstitium. www.drrobertyoung.comhttps://www.youtube.com/user/pHMiracleCenter, https://www.amazon.com/Robert-O.-Young/e/B001ILKCSU/ref=sr_tc_2_0?qid=1526157267&sr=8-2-ent

 

He is now practicing in Marbella, Spain and Sardegna, Italy, and produces delicious, organic, alkaline products in Italy and the USA: www.iJuicenow.comwww.phoreveryoung.comwww.phmiraclestore.comwww.alkalinecare.com, and www.phmlife.com.

You can contact Dr. Young at the following email addresses: phmiraclelife@gmail.com and universalmedicalimaging@yahoo.com

Meals containing food which produce as little acid as possible and as much alkaline as possible in the body when they are digested.

Chlorophyll is the green pigment found in plants. It can be extracted from green plants and algae. It contains magnesium and antioxidants. The material in its basic structure is similar to the molecules of our blood. It can help increase the production of red blood cells, cleanse the body from poison and waste products hence raising our energy levels. www,ijuicenow.com

[ii] Pernille Knudtzon is one of Europe’s most groundbreaking doctors. She is a traveller in the field of health and says: “Health is a choice – you can make a difference”. Residing in Spain, she hosts consultations, lectures, workshops and retreats – helping thousands of people overcome serious illnesses – also in Denmark. Read more on http://www.vitafakta.es. At Pernille Knudtzon’s clinic you can, among other things get support to cleanse and rebuild your body on several levels. You can receive live and dried blood tests, medical thermographic scans and deep insight into yourself and your healing potentials.

IMG_1709.png

[iii] Galina Migalko MD, MND, RDMS, is a medical doctor with a speciality in non-invasive medical imaging, diagnostics and naturopathic medicine. http://www.universalmedicalimaging.com and universalmedicalimaging@yahoo.com

Pathological Blood Coagulation and the Mycotoxic Oxidative Stress Test

 Robert Young PhD

Naturopathic Practitioner – The pH Miracle Ti Sana Detox Medical Spa and Universal Medical Imaging Group

Abstract

Historical analysis suggests that conventional understandings of Disseminated Intravascular Coagulation (DIC) may be misguided; further examination may be necessary.  Here, a theoretical analysis provides an alternative explanation for DIC pathology; it is suggested that the cause and mechanics of DIC are largely due to the proliferation of several intravascular microforms and their associated metabolic toxic acidic waste products — Mycrozymian Acidic Toxins (MAT) and Exotoxic-Mycotoxic-Producing Microorganisms (EMPO).  The Mycotoxic Oxidative Stress Test (MOST) is presented here as an easy, inexpensive and non-invasive alternative to conventional measurements for the detection of intravascular  acidic toxins, DIC  and oxidative stress.

Introduction and Historical Perspective

More than 150 years ago, British physician T. W. Jones asked the question, “Why does the blood circulating in the vessels not coagulate?”[1]  though a general answer to this question is now obvious, the biochemical mechanisms involved in how the blood coagulates (clots) are complex and varied, and all the intricacies have not yet been explained. A. Trousseau, recognized that the blood of cancer patients is in a hyper-coagulable state in the process of coagulation, even while confined in the blood vessels.[2]  The name given to this discovery is still in use today, as “Trousseau’s Syndrome.”[2]  Early in his career, Rudolph Virchow, the Father of Pathology, was interested in thrombosis and embolism.  He speculated that intravascular blood could be altered so it would clot as a result of a stimulus too weak to clot normal blood.[3]  In 1856 Virchow delivered a lecture setting forth this concept.

Although the concept of partial clotting within vessels reaches back to the beginnings of modern medicine, much of the discovery of its biochemical mechanisms – the activation of clotting factors – has been left to chance.  The admission of a patient to the hospital with an unceplained bleeding disorder challenged researchers to discover the cause of hemorrhaging.  Analysis of blood from normal persons helped in the study of the patient with the blood disorder. A new clotting factor was hereby discovered which was missing from the  patient’s blood.  For this reason, several clotting factors have been named after the individuals in which they were missing: e.g., Christmas factor (factor IX)[4], Hageman factor (factor XII)[4].

In this article, the causes of pathological (intravascular) clotting will be described, as will various methods of detecting this condition, especially a blood test I call the Mycotoxin Oxidative Stress Test (MOST).

The Mechanics of Blood Coagulation

Blood clotting is a highly detailed chemical-mechanism involving many distinct components.  The problem for the hematologist hs been to understand it at the biochemical level.  Undoubtedly, efforts to fully understand blood clotting will continue for many more years.

Recalling Antione Bechamp’s[8] and Gunther Enderlein’s[9] research into the sub cellular living elements and combining this with what is known of colloidal flocculation[6], it is suggested that the clotting of blood begins with the end-linking (polymerizing) of the fundamental protein unit called by Bechamp the microzyma[8].  A chain of these living units constitutes fibrinogen, which is still dispersed 9micro-hetergenous0 in the blood, and it may or may not be further processed.  If processing continues, it will be either by continued end-linking or by cross-linking.  End-linked fibrinogen is referred to here as fibrin monomer, which I have suggested is a repair protein also dispersed in the blood. Due to a number of blood clotting factors, the process may continue until the excess fibrin monomer and/or until fibrin becomes excessively end-linked.

Cross-linking the polymerized strands to form a three-dimensional network results in what is called the hard clot (fibrin – the major protein of clotting blood).  Factor XIII, which instigates the forming of these blood networks. is always present but latent in the blood, and must be activated before the formation can occur.  Persons who are producing fibrin monomer or excessively linked fibrinogen are said to be in a hyper-coagulable state, while those having diminished  ability to form clots are in a hypo-coagulated state.  It is the activation of the colloidal clotting factors which is so complex.  Blood clotting may occur through many pathways and be initiated by many different stimuli.  Regardless of initiation factors, the process is a sequence of events in which the activation of one factor triggers another, until, after a series of discrete steps, fibrin is formed.

When blood is clotted prematurely, and the factors involved are consumed (incorporated into) the body recognizes a deficiency of clotting agents and generates more.  Thus, people with a tendency to clot excessively will alternate between a hyper coagulable state and a hypo-coagulatable state.  When in the hypo coagulated state, such people hemorrhage until the deficient clotting factors are replaced.[4]  When only fibrin monomer or excessively linked fibrinogen is formed (no cross-linking), it is quite subtle and may go undetected.  It may be detected by a change in blood viscosity (sedimentation rate), by the Mycotoxic Oxidative Stress Test (described later), or by other more subtle means.  If strands of fibrinogen are cross-linked, however, a suggicient amount of insoluble precipitate of fires may result, and these can be detected microscopically using a phase contrast and dark-field microscopy in prepared slides of fresh tissue or blood.  An excessive formation of fibrin leads to  an impairment in circulation, and eventual organ failure usually results.[5]

With this background, we are in a position to consider a standard medical term: disseminated intravascular coagultion (DIC).[6]  This term encompasses the hyper coagulable state, i refer to as pathological blood coagulation which consists of both insoluble and excess dispersed polymers of colloidal proteins.

Key Ingredients of Pathological Blood Coagulation

Before discussing DIC in more detail, it si necessary to introduce its fur important ingredients according to this view – mycotoxins, endotoxins, exotoxins, and tissue factor.  Any of these elements, or any combination of them, can play a major role in initiating unwanted DIC.[6]  However, mycotoxins or the acids from yeast have been found to be the underlying element which instigates and intensifies the participation of the other three.[6]  Each will now be described in turn and brought into the clotting picture.

(Micrograph 1: left, shows normal hyper-coagulated blood in a healthy blood clot sample and right, hypo coagulated blood in an unhealthy blood clot sample)

Mycotoxins and Metabolism by Fermentation

As discussed in the main text of my published book, Sick and Tired book[7 ]. acidification of blood and body tissues and organs and the accompanying lack of oxygen lead to pathological metabolic fermentation, which is carried out primarily by yeast and mold.  Such pathological microorganisms, or their precursors, ar inherent to the human body and to all higher organisms.  Their precursors according to Bechamp, the microzymas, carry on a nominal and homeostatic fermentation themselves. under healthy conditions.[8]  The primary function of yeast and mold is to decompose the body upon the death of the animal or human organism.  Their premature overgrowth indicates a biochemical environment akin to death.  During pathological metabolic fermentation, high concentrations of several acidic substances called mycotoxins are created.  They are highly damaging, always acidic, metabolic products.  If not immediately buffered by specific antioxidants, such as hydrogen peroxide and the hydroxyl free-radical, mycotoxins can seriously disrupt the physiology by disrupting normal metabolism and by penetrating blood and body cells and poisoning them.  As will be seen, they interact with many of the mechanisms for DIC in various pathological symptomologies.

In my published article called The Finger on the Magic of Life: Antoine Bechamp, 19th Century Genius (1816-1908),  I discuss pleomorphism in some detail.[7] Understanding this phenomenon – the rapid evolution of microorganisms across traditional taxonomic  lines is helpful in getting a complete picture of DIC.  Briefly stated, collodial living microzymas evolve intracellularly into more complex forms (microorganisms), beginning with a healthy primitive stage comprising of repair proteins.  As the disease condition worsens, morbid intermediate forms (filterable bacteria or viruses, cell-wall deficient forms and full bacteria) develop from repair proteins, or directly from microzymas.  A third macrostage comprises the commonly recognized culminate microorganisms which are yeast, fungus to mold.  In terms of pleomorphism, all of these microorganisms represent a single family of variously functioning forms.[8]  The culminate forms produce the lions share of acids, which are mycotoxins and the primary focus of my research.[7][8][9]  For convenience, bacteria, yeast, fungus and mold that produce acidic metabolic wastes and protein cellular fragments called exotoins, endotoxins and mycotoxins will here be referred to collectively ash EMPO, or exotoxic, mycotoxic-producing microorganisms.

What follows is a shortened description or the description and origin of several exotoxins and mycotoxins, referred to collectively microzymian acidic toxins of MAT, which are involved in the processes leading to DIC.  The bio-effects, or the pathology of cellular fermentation, of these toxic metabolites are know as mycotic illness, mycotoxicosis, or mycotoxic stress as seen in the MOST and described and published by Dr. Bolin in the 1940’s.[10]

One such metabolic product is acetyl aldehyde, which is formed by  cellular breakdown of food, especially carbohydrate and the birth of  EMPO.  Acetyl aldehyde can also break down into a secondary substance know as ethyl alcohol.  Although acetyl aldehyde presents an immediate hazard to health and well-being, nature has provided a means of buffering of neutralizing this acidic by-product of cellular digestion and fermentation almost as soon as it is created.[11] The controls of acetyl aldehyde (and ethyl alcohol) are the sulfur amino acids, cysteine, taurine, methionine and the peptide glutathione which is found in red blood cells and almost all cells utilizing oxygen.[12]  In an attempt to buffer or neutralize MAT, the body will also bind or chelate both fats and minerals to them.[12]

Another member of the MAT family is uric acid, which is formed by the digestion of protein and the creation of EMPO.[13]  Uric acid can also break down into secondary substance, on of which is alloxan.[14] This has been shown to damage the insulin-producing pancreatic beta cells leading to diabetes [Refer to Tables 1 and 2]

A shortage of alkalizing nutrients or an excess of MAT initi­ates an immune response in which a special class of free radicals which I call microzymian oxidative buffering species (MOBS) are released.[15] These oxygen metabolites carry unpaired electrons and are intended to disrupt bacteria, yeast, fungus and mold, and buffer exotoxins, endotoxins, and mycotoxins. Current medical savants believe that they can disrupt just about any­thing they contact, including healthy cells and tissue: this is not accurate. The fact is that MOBS carriers a nega­tive surface-charge and repel healthy cells, which also have a negative surface-charge. [16] It is the positively surface-charged bacteria, yeast/fungus, mold, exotoxins, endotoxins, and myco­toxins that MOBS bind too.[17]  This aspect gives some insight into autoimmune phenomena, which are not, as is often maintained, the result of an overburdened immune system. They result either as a side-effect of the immune system’s attempt to remove foreign or toxic ele­ments, or as a direct attempt by the immune system to remove cells or tissue rendered useless or disturb­ing to the body by MAT.

In every degenerative symptomatology I have studied, I have found excessive MAT and MOBS (see Tables 1-3). Some of these degenerative symptoms and their underlying disease conditions, including cancer are described in my recently published paper on a deficiency on alkaline nutrition and cancer. [15] But the fact that myco­toxins cause harm to humans and other animals is purely a secondary effect, since, as noted, the prima­ry function of the microorganism is not to cause illness. We know from the fossil record that pleomorphic microforms existed long before animals.[19] In fact, humans and animals developed in terms of micro­organisms.[20] The reverse, however, is not true. Since micro­organisms appeared first in the developmental sequence, they are not physiologically aware of humans and animals. There is much evidence that human and animal physiologies are highly aware of, and respond to MAT – these acidic compounds signaling the presence of bacteria, yeast, fungi and/or mold or  EMPO.[21].

Endotoxins

Also involved in the process leading to DIC are endotoxins, substances endogenous to symptogenic (i.e., “pathogenic” in orthodox terms) bacteria. Endotoxins are a family of related substances having certain common characteristics, but differing from one bacterial form (or strain) to another. Endotoxins are lipopolysaccharides (LPS). LPS form a widely diversified group because of (1) the number of long- chain fatty acids composing lipids; (2) the number of individual sugars as well as their modes of linkage to one another; (3) the branching of sugar chains; and (4) the number of possible arrangements of these units. Endotoxins also contain proteins, further com­pounding the structural diversity.[22]

One theory on endotoxin states that its purpose is to act as a semi-permeable membrane for the bac­terium, limiting and regulating substances entering the organism.[22] Endotoxin resides solely on or near the interior surface of the cell membrane and is shed into the surrounding medium only upon the death of the bacterium. Thus, as these microforms die off, or are lysed by bodily activity, endotoxin is released. (This fact may well be an explanation for the Herxheimer reaction, in which a patient becomes worse following the administration of toxic drugs or other forms of treatment that drastically alter the associated organ­ism.[23]) Another endotoxin theory states that LPS are a constituent of the membrane, and as the organism grows, endotoxin fragments are repeatedly sloughed off into the medium. This phenomenon has been observed in the digestive tract.[24] Since bacterial translocation into the blood is not only possible but common where epithelial hyperpermeability exists, one can assume that the process will continue there. Both theories may be correct if we think of the first one as true of “adult” forms, and the second as true of newly developed and expanding ones.

Basic to the structure of an endotoxin is the lipid common to all forms, designated lipid A, to which is attached a “core” polysaccharide, identical for large groups of bacteria. To the core polysaccharide is attached the O-antigen, consisting of various lengths of polysaccharide chains which are chemically unique for each type of organism and LPS. These chains pro­vide endotoxin specificity.[25] Experiments conducted over many years indicate that most, if not all, of the toxic effects of an endotoxin may be attributed to the lipid portion, and it is sometimes used per se in experiments rather than the entire molecule.[26] An important additional feature of lipid A is its phos­phate content. Each phosphate group carries a nega­tive charge, and since lipid A is a rather large mole­cule, it provides, essentially, a negatively charged sur­face. The importance of this will be seen shortly.

Exotoxins

These are the metabolic excretions of bacteria. While endotoxin’s ongoing effect is, in a manner of speaking, in the background, exotoxins, like myco­toxins, present a double-edged sword. Not only do they initiate DIC, but they produce, or influence the body to produce, the various and numerous infec­tious symptomatologies, such as typhoid fever, diph­theria, etc. (See “Vaccination Reconsidered” in Section 4 of the Appendix of Sick and Tired for details on the action of diphtheria toxin.)[7] By comparison, mycotoxins not only initiate DIC, but there is much evidence to sug­gest that they produce, or influence the body to pro­duce, degenerative symptomatologies, such as arthri­tis, diabetes, etc., and cancer and AIDS as well.

Tissue Factor

Crucial to the understanding of DIC is recogni­tion of the role of tissue factor (TF), formerly known as thromboplastin. This transmembrane lipoprotein exists on the surface of platelets, vas­cular endothelial cells, leukocytes, monocytes, and most cells producing EMPO.[27] It plays a major role in several biochemical mechanisms leading to DIC.

TF is the primary cell-bound initiator of the blood coagulation cascade. Its gene is activated in wound healing and other conditions. By itself it is capable of initiating clotting, but also becomes active when complexed with factor VII or activated factor VII (Vila).[28] TF has been described as the receptor for factor VII because of the close association between the two proteins and because it causes a shape change (conformational) in factor VII, allowing it to attain activity. Both factor Vila and the TF/VII com­plex activate factors IX and X, which initiate the clotting cascade and the formation of thrombin.[29]

Development of Disseminated
Intravascular Coagulation
(DIC)

DIC Induced by MAT and Tissue Factor

An infusion of toxins into the blood has a direct effect on TF gene expression in leukocytes. Contact of MAT, endotoxins (lipid A), or exotoxins with leukocytes, activates proteins that bind to DNA nucleotide sequences, thereby activating the TF gene.[30] (See Tables 4-6.)

Endothelial cells damaged in culture by exotoxins, endotoxins, or mycotoxins attract polymorphonuclear leukocytes (PMNs), which adhere to the damaged cells. Once the leukocytes are bound, they can still have their TF gene activated if it hasn’t yet occurred, and they may release MOBS in response to toxins and to organisms of disease, possibly creating further dis­turbances. (Cellular disorganization then releases acti­vating proteins into the blood, which is discussed in more detail later.) Research shows that exotoxic and mycotoxic stress resulting in bound PMNs can be blocked by “antioxidants.”[31] These might better be called anti-exotoxins or antimycotoxins. Both observa­tion and study have led the author to conclude that cellular disorganization is initiated and primarily caused by fermentation pathology, not, as is the cur­rent belief, by the MOBS, or free radicals, generated to destroy toxins and microorganisms. MOBS or free radicals, because of their negative charge, are released to chelate or bind EMPO and MAT. It is suggested by current savants that free radical tissue damage is the secondary, “shotgun” effect of intense immune response to EMPO toxification and MAT-damaged cells. This could not be the case since healthy cells or their membranes carry a negative charge and would resist any electromagnetic attraction because of simi­lar charge. The concentration and instability of MAT generated in a compromised terrain, as opposed to the fleeting existence of free radicals, especially exoge­nous ones, also lead to this conclusion.

Endothelial cells grown in culture can be induced to express tissue factor. In one experiment, no procoagulant activity could be detected in the absence of toxins. However, the addition of mycotoxins from Aspergillus niger or Micrococcus neoformas (Mucor racemosus Fresen) resulted in procoagulant activity which reached a maximum in four to six hours and was dose-dependent. The same experiment was applied using E. coli and Salmonella enteritidis endo­toxin with a similar result.[32] A single intravenous injection of a mycotoxin from Aspergillus niger into experimental animals resulted in circulating endothelial cells within five minutes. In other exper­iments with the mycotoxin, detachment of endothe­lial cells from the basement membrane was noted.[33] (See Table 8.)

Removal of endothelial cells has dire conse­quences from two standpoints: First, the surface of these cells is covered with a specific prostaglandin (PGI2) known as prostacyclin. If blood contacts a surface not covered with PGI2, it will clot. For example, surfaces devoid of this prostaglandin are formed whenever a vessel is cut or punctured. An abrasion or other injury may also expose a surface on which PGI2 is lacking. The removal of endothelial cells by exotoxins or mycotoxins creates a surface devoid of PGI2, leading to blood clotting (see Table 7). Secondly, disorganization of endothelial cells cre­ates increased levels of EMPO and MAT which are attracted to an exposed surface (basement mem­brane) which expresses a negative charge. This also leads to clotting.

DIC Induced by Electrostatic Attraction

It was discovered in 1964 that blood will clot sim­ply from contacting a negatively charged surface.[34] Previously it was believed that the clotting process comprised a cascade of enzyme activity in which one activated the next, etc. The discovery that blood could be clotted simply by contacting a negatively charged surface ruled out the purely enzyme hypoth­esis. Only some of the known clotting factors have been shown to be enzymes.[35] As a result of this sur­prising discovery, detailed research was conducted in an attempt to describe the process. In some experi­ments, the negatively charged surfaces of selected, finely divided, inorganic crystals, including alu­minum oxide, barium sulfate, jeweler’s rouge, quartz, and titanium oxide, were considered.[36]

The clotting factor eventually shown to be activat­ed when whole blood contacted negatively charged surfaces was factor XII, also known as the Hageman factor. This is a positively charged protein migrating in an electric field (electrophoresis) toward the anode.[37] It is believed that factor XII is normally in the shape of a hairpin which binds to the negatively charged sur­face at the bend. Electrostatic attraction forces the two arms to lie flat on the surface, thereby exposing the inner faces and activating the molecule.

It was discovered that if the negatively charged particles were smaller than the clotting factor itself, activation was minimal. Or, if the concentration of clotting factor was too great, there was little or no activation.[38] Both of these observations indicated that the process was one of electrostatic attraction between the negatively charged surface and the clot­ting factor, which is a “basic” protein, that is, posi­tively charged.[39]

Activation of factor XII allows the activation of factor XI, which then activates factor IX. Thus, the blood clotting cascade continues to the formation of fibrin in the normal manner.[40] However, due to a series of activations begun by contact of factor XII with a negatively charged surface, trace amounts of factor Xa also show up in the blood. Factor VII is activated to Vila by factor Xa. Factor Vila then acti­vates factors IX and X, leading to the formation of thrombin. Factor Xa, with co-factor Va, continues the clotting cascade until fibrinogen is activated, leading to fibrin formation.[41] (See Table 5.)

As discussed earlier in terms of prostacyclin, beneath endothelial cells is another surface—the basement membrane. Called the extracellular matrix, it is a thin, continuous net of specialized tis­sue between endothelial cells and the underlying connective tissue. It has four or more main con­stituents, including proteoglycans (protein/polysac- charide).[42] The removal of endothelial cells by’MAT exposes this membrane, which is negatively charged by virtue of its sulfonated polysaccharides in the pro­teoglycans. This brings a reduced negatively charged surface into direct contact with the blood, which activates factor XII and the clotting cascade.[43]The positively charged toxic components of MAT also activate factor XII, as do disturbed disorganized cells, yeast/fungus cells, moldy cells, and the phos­phate groups in the lipid A component of endotoxin. (See Tables 2-5.)

To summarize this section, exotoxic, mycotoxic, and oxidative stress resulting from the overgrowth of bacteria, yeast/fungus, and then mold, has multiple actions, all leading to disseminated intravascular coagulation:

MAT activation of tissue factor gene in leukocytes; subsequent activation of factors VII, IX, and X, resulting in the blood clotting cascade.

MAT activation of tissue factor gene in endothelial cells, again leading to the clotting cascade.

MAT damage to endothelial cells, resulting in neu­trophil attraction, with TF gene activation and generation of MOBS, which, in turn, neutralize MAT, protecting healthy endothelial cells or the basement membrane and supporting the janitorial services of the leukocytes.

Removal of negatively charged endothelial cells by positively charged exotoxins, endotoxins, and mycotoxins, creating a surface devoid of PGI2, also exposes the negatively charged basement membrane, leading to the activation of factor XII and initiation of the clotting cascade. Positively charged components of EMPO, exotoxins and mycotoxins, and several other elements, including the lipid A component of bacterial endotoxin, also activate factor XII and the clotting cascade.

Endothelial Cells as Antithrombotics or Procoagulants

Normal, resting (unstimulated) endothelial cells show antithrombotic activity in several ways: (1) by the inhibition of prostacyclin (platelet adhesion and aggregation); (2) the inhibition of thrombin genera­tion; and (3) the activation of the fibrinolytic system, leading to clot lysis.[45] We will take a brief look at the thrombin aspect.

On the surface of endothelial cells is a protein called thrombomodulin, which acts as a receptor for thrombin. When bound to thrombomodulin, throm­bin can activate protein C. Activated protein C then catalyzes the proteolytic cleavage of factors Va and Vila, thereby destroying their participation in blood clotting. Thus thrombin, which normally activates fib­rinogen, plays an opposite role in this case and inhibits the clotting process.[46,47] (See Table 7.)

On the other side of the coin, the endothelial cell becomes a procoagulant agent when acted on by cer­tain lymphokines, such as interleukin-1. Not only can interleukin-1 induce TF gene expression, but it also suppresses transcription of the thrombomodulin gene in endothelial cells. As in other situations, the lymphokine-activated endothelial cell expresses TF on its surface as a result of TF gene activation. This leads to the production of thrombin and the trigger­ing of the blood clotting cascade.[48] (See Table 5.) Many lymphokines also stimulate adhesion of leuko­cytes to endothelial cells damaged by MAT, resulting in recycling of the cells by MOBS, as described later.

DIC Induced by Intracellular Exotoxic, Mycotoxic, Oxidative Stress by Bacteria, Yeast/Fungus and/or Mold

Any cell which has gone from an oxidative to a fer­mentative state can biochemically cause macrophage production of the lymphokine tumor necrosis factor (TNF). This protein has been shown to activate the gene for TF in fermenting cells, which are so behaved due to morbid evolution of bacteria, yeast/fungus, and then mold.[49,50] In the author’s view, a cell having been switched entirely to fermentation metabolism as a result of a physical or emotional disturbance of that cell, is what constitutes cancer (see Tables 5 and 13). (One might argue that this definition does not fit all “forms” of cancer, such as leukemia, for example. This is because leukemia is not cancer, but an immune response to the rise in EMPO and MAT in the body, and a relatively easy compensation to correct.)

The surface of many disorganizing or fermented cells (cancer cells) is characterized by small projec­tions in the plasma membrane which pinch off, becoming free vesicles containing toxins as well as TF complexed with factor VII. These vesicles can aggre­gate and/or lodge anywhere, ultimately releasing their contents. Also, the presence of excessive amounts of TF/factor VII complexes on the surface of fermented cells allows the formation of a fibrin net around the cell and around the entire mass of cells (tumor). This seems to be an attempt by the body to encapsulate and contain the mass. However, fermented cells do escape from the primary fibrin net, perhaps due to some electromagnetic effect, and become free-float­ing in the circulation. They may thus lodge elsewhere and instigate the fermentation of other cells by fungal penetration or by poisoning them and provoking a morbid evolution of their inherent microzymas.

Because of the surrounding fibrin net, these mobi­lized fermenting cells are protected from collection by the immune system while in transit.[51,52] (See Table 4.) The blockage or dissolution of fibrin net forma­tion by an anticoagulant such as heparin allows freed, fermenting (metastasizing) cells to be dismantled by natural killer cells and other immune cells (see Tables 5, 12 and 13).

DIC Induced by MAT/EMPO and Immune System Response (Release of MOBS)

Unsaturated fatty acids are highly susceptible to EMPO as well as MAT. Linoleic acid, a long-chain fatty acid present in white cells, has 18 carbons and 2 unsaturations. Subjected to MAT, linoleic acid binds the exotoxin, endotoxin, or mycotoxin, there­by forming an epoxide at the first unsaturation.[53] Research has revealed that this compound, named leukotoxin, is highly disturbing to other cells. It caus­es platelet lysis, thereby releasing TF and initiating DIC.[54] (See Table 10.) The fact that MAT result in fermented fats lends further credence to the sugges­tion that the initial and primary degenerative damage to structures and substances in the body is caused by exotoxins and/or mycotoxins, and that damage by MOBS, or by other free radicals, is not possible.

Another mechanism leading to DIC is the release of a special glycoprotein, sialic acid, from the terminal ends of cell-membrane polysaccharides, where it is always found. Polysaccharides play a highly significant role in biochemical processes, with both enzymes and membrane receptors recognizing various groupings of specific sugars linked in highly specific ways.

Immediately preceding the release of sialic acid in the polysaccharide chain is the sugar galactose. The sialic acid/galactose arrangement is utilized as a biolog­ical indicator of cellular and molecular aging. As cells age, sialic acid is naturally expressed from the terminal ends of polysaccharides, thereby exposing galactose. A membrane-bound enzyme from the liver, galactose oxi­dase, recognizes galactose and eventually disorganizes it, disrupting cell function integrity and hastening demise. Aged red blood cells, which have expressed a significant amount of sialic acid, are removed from the blood by this process. (I theorize that the biological ter­rain may be at work in normal cell aging. That is, the rate at which sialic acid is expressed is determined by the levels of corrosive acids in the system and the body’s ability to remove them, although there are no doubt intracellular factors at work as well.)

I suggest from my years of  clinical research  that cellular breakdown is compounded by the fermentation of the galactose by the microzyma. This is a process that begins from within and not necessarily from without. Not only does this action create more sialic acid, it creates other toxic waste products such as acetic aldehyde, alcohol, uric acid, oxalic acid, etc. The increase in cellular disturbances and fermenta­tion of the galactose creates biochemical signals for more galactose oxidase. This leads to greater cellular disorganization and developmental morbidity, espe­cially in the red blood cells, and a rise in the level of detrital serum proteins, which encourages clotting. From this perspective, diabetes, arthritis, atheroscle­rosis and other symptomatologies become more clearly “degenerative” (see Tables 2-5, 12 and 13).

Fibrinogen is a rather elaborate protein having the structure of three beads on a string. Expressed on the end beads is sialic acid, which indicates the beginning of disorganization of the fibrinogen and a declining negative charge to the positive. Prior to the declining charge and the expression of sialic acid on the end beads, fibrinogen, which is negatively charged, will not polymerize the healthy blood due to mutual repulsion. However, fibrinogen will poly­merize to damaged cells, EMPO, MAT and other positively charged areas of the body for repair pur­poses. Thus, as more and more sialic acid is expressed, there will be a significant reduction in the charge of the fibrinogen, acting as the primary requirement for the polymerization of fibrinogen (hypercoagulable state). The resulting polymer, fib­rin monomer, is the protein chain used in the repair of cells and clotting of blood.[55] End-linking will take place after the release of sialic acid (positive charge) by whatever means.

With this background, it is interesting to note that blood taken from persons suffering from anxiety is expressing sialic acid from fibrinogen, and is halfway toward clotting. Hormones released during anxiety states are easily fermented, giving more momentum to MAT and thereby resulting in this important change in fibrinogen. It leads to a clotting pattern characteristic of anxiety stress, and is readily identi­fied in the MOST. As can be seen in this picture, the pattern is a “snowstorm” of protein polymeriza­tions measuring from 2 to 10 microns.

allergiesbefore

 

 

 

 

 

 

 

[Micrograph 2: An Anxiety Profile showing a ‘snowstorm’ of 2 to 10 micron protein polymerizations starting from the center of the clot and moving out towards the edge]

As mentioned earlier, despite the attempt by the body to neutralize EMPO and MAT, an excess will initiate the release of MOBS by immune cells. A major MOBS is superoxide, designated chemically as O 2. It may exist alone or be attached to another ele­ment, such as potassium (KO’2) or sulfur (SO). Again, however, nature has provided a means of pro­tecting healthy cells—their negative charge[1]. Another protection against superoxide is the enzyme superox­ide dismutase (SOD), also found in all healthy cells.

A second member of the MOBS family is hydro­gen peroxide (H202). This molecule is very unstable and tends to react rapidly with other biological mol­ecules, damaging them. The release of hydrogen per­oxide in the body is a response to the overgrowth of decompositional organisms in a declining pH (com­promised biological terrain). The control for healthy cells against hydrogen peroxide is their negative charge and the protective enzyme catalase, one of the most efficient enzymes known.

When leukocytes and other white blood cells are stimulated by the presence of bacteria, yeast/fungus and mold, they treat these organisms as foreign par­ticles to be eliminated. During and prior to phagocy­tosis, the foregoing oxidative cytotoxins, along with the hydroxyl radical (OH’), are generated and released specifically for neutralizing microforms or harmful substances. This release is referred to as an “oxidative burst.” As a result of fermentation and the production of exotoxins and mycotoxins that fer­ment galactose from cells, the immune system is activated. An oxidative burst is released to neutralize the morbid microforms and mycotoxicity.[56] Like other biological processes faced with constantly alarming situations, the continued release of MOBS can get out of control. This may damage endothelial cells, the basement membrane, or other body ele­ments, and this activates fibrinogen to fibrin monomer (repair protein), leading to DIC [see Table 9]. Interestingly, the white blood cells capable of neutralizing MAT through MOBS production are the same ones capable of phagocytosis, the process by which foreign matter, waste products and microor­ganisms are collected and dumped in the liver.[57]

To summarize this section, pathological microforms and their acids create DIC by a number of pathways:

Leukotoxin (linoleic acid bound to mycotoxin) is highly toxic to cells. It causes platelet lysis, there­by releasing TF and initiating DIC.

The expression or release of sialic acid residues from healthy cells that have been disturbed allows for the fermentation of galactose, creating exotox­ins and mycotoxins, biochemically activating galactose oxidase, which further disturbs and dis­organizes healthy cells. This cycle loads the blood with debris.

EMPO and MAT disturb fibrinogen, which releas­es sialic acid and reduces the charge, allowing it to polymerize into fibrin monomer and fibrin nets.

The presence of exotoxins, endotoxins, and myco­toxins and their poisoning of cells activates the immune system. White blood cells generate MOBS (e.g., superoxide [0′2] or hydrogen perox­ide [H202]). These substances bind to and neu­tralize EMPO and MAT. MOBS are repelled by healthy endothelial cells and the basement mem­brane because of their negative charge. Cellular disturbances and disorganization stimulate the generation of fibrin monomer for repair purposes, leading to DIC.

Detection of Disseminated Intravascular Coagulation

The Sonodot Analyzer

The Sonoclot Coagulation Analyzer provides a reaction-rate record of fibrin and clot formation with platelet interaction. An axially vibrating probe is immersed to a controlled depth in a 0.4 ml sample of blood. The viscous drag imposed upon the probe by the fluid is sensed by the transducer. The electronic circuitry quantifies the drag as a change in electrical output. The signal is transmitted to a chart recorder which provides a representation of the entire clot for­mation, clot contraction and clot lysis processes. The analyzer is extremely sensitive to minute changes in visco-elasticity and records fibrin formation at a very early stage. The Sonoclot has been evaluated scientif­ically and shown to provide an accurate measurement of the clotting process.[58,59]

One application of the Analyzer has been the development of a test to distinguish non-advanced breast cancer from tumors that are benign. The ratio­nale for the test is the hypercoagulable state seen in cancer patients (Trousseau’s Syndrome), resulting from the generation of TF by leukocytes (mono­cytes).[60] (See Table 4.)

Fibrin Degradation
Products and Fibrin Monomer

DIC can be seen as a two-step process. First, fib­rinogen, which is always present in the blood, is acti­vated by any of several mechanisms. This activation leads to an automatic polymerization (chain forma­tion) resulting in fibrin monomer. This is not apparent in a microscope unless the blood is allowed to clot, as in the MOST.[61,62] The second step is the precipitation or deposition of fibrin (hard clot) by several other mechanisms. One of these is the formation of cross­links through the action of factor XIII. Another such mechanism may be poor circulation in an organ already blocked by deposited fibrin. The deposition of precipitated fibrin may be detected microscopically in tissue sections and diagnosed as DIC.[62]

Because fibrin monomer is not readily detected, a chemical test for it is of immense value in diagnosing DIC. Research has indicated that its detection may be very useful in the early diagnosis of DIC and MAT.[63] There are three fundamental physiologic areas related to blood clotting: (1) the prevention of blood clotting, (2) the clotting of blood, and (3) the removal of clotted blood once it has formed.

Enzymes are present that are capable of removing (lysing) clotted blood, one of which is plasmin. Another enzyme, plasminogen, is always present in the blood, but is inactive as a proteolytic agent. Plasminogen acti­vator converts plasminogen to plasmin, which can degrade deposited fibrin. This process is not specific for fibrin, however, and other proteins may be affected. When fibrin is degraded (fibrinolysis), fibrin monomer, as well as several other products, are formed. Commercial kits are available for the analysis of fibrin degradation. This test is an indirect measure of the pres­ence of DIC and MAT.[64]

Other tests include:

Protamine Sulfate: Protamine sulfate is a heparin binder sometimes used in surgery for excessive bleed­ing. The test, which indicates fibrin strands and fibrin degradation products, is conducted in a test tube, with fibrin monomer and fibrin forming early and polymer­ization of fibrin degradation products occurring later.[65] Ethanol Gelation: A white precipitate is formed by the addition of ethanol to a solution in a test tube containing fibrin monomer as a degradation product of fibrin, indicating DIC and MAT.[66]

The Mycotoxic Oxidative Stress Test (MOST)

Up to now, blood chemistries have been the prima­ry mode of diagnosis or analysis for the presence of pathology. In the view presented here, the bright-field microscope, is used to easily and inexpensively reveal a disease state as reflected by changes in certain aspects of blood composition and clotting ability. DIC is char­acterized by the abnormal presence in the blood of fib­rin monomer. When allowed to clot, blood containing such an abnormal artifact will exhibit distortions of normal patterns. The presence in the blood of soluble fragments of the extracellular matrix and soluble fibronectin, as well as other factors, will also create abnormal blood clotting patterns as described below.

A small amount of blood from a fingertip is con­tacted with a microscope slide. A series of drops is allowed to dry and clot in a normal manner. Under the compound microscope, the pattern seen in healthy subjects is essentially the same—a dense mat of red areas interconnected by dark, irregular lines, completely filling the area of the drop. The blood of people under mycotoxic/oxidative stress exhibits a variety of characteristic patterns which deviate from nor­mal, but with one striking, common abnormality: “clear” or white areas, in which the fibrin net/red blood cell conglomerate is missing.

BowelCancerLive Blood Dried Blood_0166

 

 

 

 

 

 

 

 

[Micrograph 3; An abnormal clot with striking ‘clear’ or white areas or protein polymerization as seen in the hyper coagulated blood of a patient with lower bowel imbalances]

Why the fibrin net is missing may be understood from the following: Two peptides—A and B—in the central protein bead of the fibrinogen structure become bound in the cross-linking process. There are two ways this can be configured: (1) Thrombin is capable of activating peptides A and B, resulting in the formation of a polymer loosely held together only by hydrogen bonds; (2) With peptides A and B acti­vated normally, the resulting hard clot is insoluble, indicating that the peptides are linked by covalent bonds. The difference in bonds results from factor XIII, an enzyme which links the two fibrin strands with a glutamine-lysine peptide bond.

Additional research has shown that the release of sialic acid from fibrinogen inhibits the action of factor XIII, resulting in a soft, white clot. In addition, acetic aldehyde has been shown to inactivate factor XIII directly. The soft clotting, compounded by other polymeric aggregations (described below), results in clear areas in the dry specimens. In the opposite extreme, high serum levels of calcium, for the pur­pose of neutralizing MAT, activates factor XIII, lead­ing to excessive cross-linking of fibrin to form a clot harder than normal. This is reflected in the MOST pattern characteristic of definite hypercalcemia— that of a series of cracks in the clot radiating outward from the center, resembling the spokes of a wheel. High serum calcium is the body’s attempt to com­pensate for the acidity of mycotoxic stress by pulling this alkalizing mineral from bone into the blood. This demand creates endocrine stress in turn, because reabsorption of bone is mediated by parathormone (PTH). Therefore, this clotting pattern indicates cal­cium deficiency and thyroid/parathyroid imbalance.

calciumpattern

 

 

 

 

 

 

 

[Micrograph 4: A mineral deficiency or more specifically a calcium deficiency pattern associated with an imbalance of they thyroid and/or parathyroid}

Advanced research has shown that there are seven carbohydrate chains in fibrinogen (each terminated by sialic acid). A second action of factor XIII is to ferment a large amount of carbohydrate during clot­ting. Because carbohydrate is most often water solu­ble, the loss of this material undoubtedly adds to the insolubility of a clot, while pathological retention contributes to the softness of the abnormal clot.

Clinical experience demonstrates that the MOST is a reliable indicator of exotoxic and mycotoxic stress and, concurrently, of various disorganizing symptoma­tologies associated with fermentative and oxidative processes. As various cellular degradation occurs, the blood-borne phenomena which accompany such symptoms as diabetes, arthritis, heart attack, stroke, atherosclerosis and cancer show up in the MOST, often with sialic acid beads in the clear areas of poly­merized proteins. (Determination of the liberation of sialic acid from carbohydrate has been approved by the U.S. Food and Drug Administration as an accept­ed indicator for cancer, and is clinically available.)

sialicacid

[Micrograph 5: Sialic acid beads are seen inside the protein
polymerization of the hypocoagulated blood as black dots]

The extent and shape of the clear areas are reflec­tive of particular symptomatologies which have arisen from the way in which the disease condition manifests in a given individual. This observation is borne out by having the patient undergo appropriate alkalizing therapy. With success of treatment based on the patient’s freedom from symptoms, sense of well-being, and live blood exams discussed in the main text of Sick and Tired, Reclaim Your Inner Terrain, Appendix C,[7] repeated analysis with the MOST reveals a progressively improving clotting pattern.

[Micrographs 6 and 7: Medically diagnosed cancer patient with large polymerized protein pools (PPP) in the hypo-coagulated blood above. In the picture below PPP’s have significantly reduced in size and the blood is moving to a more hyper-coagulated state as a result of reducing acid loads with an alkaline lifestyle and diet (7, 70)]

Because of its very nature, the MOST is emi­nently suited to reveal and measure the presence in the blood of abnormal substances, clotting factors, and disorganization of cells due to an inverted way of living, eating, and thinking, which gives rise to MAT. The MOST indicates both the direct and indirect activity of MAT on blood clotting, endothelium, and the extracellular matrix (described next), as well as on biochemical pathways, including hormonal ones. The generation of excessive MOBS in response to EMPO and MAT, the inability that accompanies all degenerative symptoms to neutralize or eradicate EMPO and MAT, and the recognized hyper- and hypocoagulable states seen in various symptomatolo­gies, will beyond doubt be revealed in the MOST.

Aspergillusnigercrystal

 

 

 

 

 

[Micrograph 8 and 9: Medically Diagnosed HIV/AIDS micrograph showing above an Aspergullus niger mold crystal using dark field microscopy and below a hypocoagulated blood clot with systemic protein polymerizations measuring in excess of 40 microns using bright field microscopy}

HIV

 

 

 

 

 

 

As mentioned, hormones are easily fermented, and this will show up as a hypocoagulated blood pattern in the MOST. It is my opinion, this hypocoagulated blood appears in the MOST as misty clouds of protein polymerizations throughout the clot, as seen in the accompanying picture.

poorfibrin

[Micrograph 10: Poor fibrin interconnection in the clot associated with endocrine or hormonal imbalance]

The MOST from Solubilized Extracellular Matrix

There is now a clearer picture of the biochemical rationale for correlating abnormal blood clotting patterns with the presence of degenerative symptoms.  A link between symptoms and the distorted clotted blood patterns has been delineated in the MOST.
Another reason for the abnormal clotting patterns accompanying pathological states, in addition to insufficient bonding of fibrinogen peptides as seen in the MOST, is presence in the blood of water-soluble fragments of the extracellular matrix.

Extracellular Matrix Degradation by MAT

The extracellular matrix (EM) is a three-dimen­sional gel, binding cells together and composed of five or more major constituents: collagen (protein), hyaluronic acid (polysaccharide), proteoglycans (pro- tein/polysaccharide), fibronectin and laminin. Also included are glycosaminoglycans and elastin.[67] In every degenerative disease studied by this author, evidence has been found for MAT activity destruc­tive of EM.

One of the proteolytic enzymes activated in response to EMPO and MAT is alpha-1 antitrypsin (capable of neutralizing MAT), normally not active in the presence of the enzyme trypsin. The active por­tion of this anti-exotoxin and antimycotoxin contains the amino acid methionine, which includes a C-S-C linkage. When chelated by the hydroxyl radical (one of the MOBS oxidants), methionine’s central sulfur atom acquires one or two oxygen atoms (forming the sulfone or sulfoxide respectively). The fermentation of methionine is a secondary effect of immune response to an alarming situation, intended to neutral­ize MAT and prevent degradation of the EM. Once alpha-1 antitrypsin is exhausted, MAT will have more access to the EM. If the EM is damaged beyond repair, then the enzyme trypsin is released to disorganize and recycle the cells involved.[68]

A similar scenario holds for the enzymes collage- nase and elastase. Thus, the absence of alpha-1 antitrypsin in the presence of EMPO and MAT activates three enzymes which degrade the extracellular matrix. Degradation of the EM by enzymes and MAT puts into the blood the water-soluble fragments (proteins and glycoproteins) of normally insoluble EM components (see Table 11). The presence of these fragments modifies the normal clotting pattern (described below), as seen in the M/OST, and is therefore an indication of EM degradation, which is always found with degenerative symptoms. (Also present is fibrin monomer, which has been found in the blood of patients suffering from collagen dis­ease.[69] See Table 11.)

Fibronectin is a molecule in EM having several binding sites for various long-chain molecules— heparin (a sulfonated polysaccharide) and collagen, for example. As such, it functions as a cellular glue, bind­ing cells together as well as various components of the EM. A soluble form of fibronectin is normally found free in the blood, and enters into the formation of a blood clot through the action of factor XIII. This form of fibronectin binds to fibrin. Elevated, bound-serum fibronectin results from EM fragmentation by MAT, and accompanies degenerative symptoms such as arthritis and emphysema (collagen diseases).

Water-soluble fragments of the EM bound by fibronectin form a three-dimensional network or gel in the pathologically clotted blood (fibrin and com­ponents of the blood clotting cascade). Since fibronectin binds to both fibrin and collagen, the two polymeric networks are superimposed and intermin­gled, resulting in a modification of the normal clot­ting pattern. Exactly how the pattern is modified depends upon the nature of the collagen abnormally present, the nature and extent of hyaluronate pre­sent, and the degree to which EM fibronectin has been released by MAT.

Conclusion

Thus, it is easily seen that there are many forms which the pattern of clotted blood may take, depending on the individual and the internal terrain that produced the modifying substances. The MOST reveals not only the presence of exotoxic and mycotoxic stress, but indicates as well the nature of the symptom(s) resulting from the stress (see Table 12). Since MAT underlie the entire complex of events which degrade the extracellular matrix, I must conclude that the absence of these exotoxins, endotoxins and mycotoxins would provide substantial improvements in tissue integrity and the overall physiology and functionality of the organism or animal and human.

­

­

References

[1]  Jones, T.W., “Observations on some points in the anatomy, physiology and pathology of the blood.”  British Foreign Medical Review, 1842. 14 : 585.

[2] Trousseau, A., Phlegmasis alba delens. “Clinque Medicale de L’Hotel Dieu de Paris.”, 1865, 3:94

[3]  Virchow, R., “Hypercoagulability: A review of its development, clinical application, and recent progress.”  Gesammelte Abhandlungen our Wussenschaftlichen Medizin, 1856, 26:477.

[4]  Rapaport, S.I., “Blood Coagulation and its Alterations in Hemorrhagic, and Thrombotic Disorders.”  The Western Journal of Medicine, 1993; 158: 153.

[5]  Hamilton, P.J. et al., “Disseminatied Intravascular Coagulation: A Review.”  Journal of Clinical Pathology, 1978, 31: 609

[6] The Harper Collins Illustrated Medical Dictionary, 1994, p.13.

[7] Young, RO, “Sick and Tired, Reclaim Your Inner Terraine,” Woodland Publishing, 1999.

[8] BeChamp, A., “The Blood and Its Third Anatomical Element,”  Hikari Omni Publishing, 1999.

[9]  Schwerdtle, C, Arnoul, F, Enerlein, G, “Introduction to Darkfield Diagnostics”, Semmelweis-Verlag (2006).

[10]  Hawk, BO, Thoma, GE, Inkley, JJ, The Evaluation of the Bolen Test as a Screening Test for Malignancy*, cancerres.aacrjournals.org on December 5, 2015. © 1951 American Association for Cancer Research.

[11]  Uchida, K., “Role of Reactive Aldehyde in Cardiovascular Diseases”,  Labortory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya, Japan , Free Radical Biology and MedicineVolume 28, Issue 12, 15 June 2000, Pages 1685–1696

 [12] Chang JCvan der Hoeven LHHaddox CH, “Glutathione reductase in the red blood cells”,  Ann Clin Lab Sci. 1978 Jan-Feb;8(1):23-9.

[13] Kutzing, MK, Firestein, BL, “Altered Uric Acid Levels and Disease States”, Department of Cell Biology and Neuroscience (M.K.K., B.L.F.), Graduate Program in Biomedical Engineering (M.K.K.), Rutgers University, Piscataway, New Jersey. Address correspondence to: Dr. Bonnie L. Firestein, Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854-8082. E-mail: firestein@biology.rutgers.edu

[14] Claudino, M,. Ceolin,,DS, Alberti, S.,  Cestari, TM,  Spadella, CT, Fischer Rubira-Bullen, IR, Gustavo Pompermaier Garlet, Gerson Francisco de Assis, ” Alloxan-Induced Diabetes Triggers the Development of Periodontal Disease in Rats”,  Published: December 19, 2007. DOI: 10.1371/journal.pone.0001320

[15] Young RO (2015), “Alkalizing Nutritional Therapy in the Prevention and Reversal of any Cancerous Condition. Int J Complement Alt Med 2(1): 00046. DOI: 10.15406/ijcam.2015.02.00046

[16] Heloise Pöckel FernandesCarlos Lenz Cesar, and  Maria de Lourdes Barjas-Castro, “Electrical properties of the red blood cell membrane and immunohematological investigation”, Rev Bras Hematol Hemoter. 2011; 33(4): 297–301. doi:  10.5581/1516-8484.20110080 PMCID: PMC3415751

[17] Harris, JO, “The Relationship Between the Surface Charge and the Absorption of Acid Dyes by Bacterial Cells”, Department of Bacteriology, Kansas Agricultural Experiment Station, Manhattan,Kansas, Received for publication March 3, 195.

[18] Young, RO, “Metabolic and Dietary Acids are the Fuel That Lights the Fuse that Ignites Inflammation that Leads to Cancer”. https://www.linkedin.com/pulse/metabolic-dietary-acids-fuse-ignites-inflammation-causes-young. 2015.

[19] Snaders, R, “Did Bacteria Spark Evolution of Multicellular Life?” Berkeley News, Research, Science and Environment,  October 24, 2012.

[20] Wenner, M, “Humans Carry More Bacterial Cells than Human Ones”. Scientific American, November 30th, 2007.

[21} Animals and humans respond to MAT as a poison.

[22]  Morrison, D.C. et al. The effects of bacterial endotox­ins on host mediation systems. American Journal of Pathology, 1978; 93: 526.

[23]  Ibid.

[24]  Ibid.

[25]  Van Deventer, S.J.H. et al. Intestinal Endotoxemia. Gastroenterology, 1988; 94(3): 825-831.

[26]  Morrison, D.C. et al., op. cit.

[27]  Ibid.

[28]  Hu, T. et al. Synthesis of tissue factor messenger RNA and procoagulant activity in breast cancer cells in response to serum stimulation. Thrombosis Research, 1993; 72: 155.

[29]  Rapaport, op. cit. (Ref. 4).

[30]  Ibid.

[31]  Mackman et al. Lipopolysaccharides—mediated tran­scriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. Journal of Experimental Medicine, 1991; 174: 1517.

[32]  Yamada, O. et al. Deleterious effects of endotoxins on cultured endothelial cells: An in vitro model of vascular injury. Inflammation, 1981; 5: 115.

[33]  Colucci, M. et al. Cultured human endothelial cells: An in vitro model of vascular injury. Journal of Clinical Investigation, 1983; 71: 1893.

[34]  Cho, T.H. et al. Effects of Escherichia coli toxin on structure and permeability of myocardial capillaries.

[35]  Acta Pathologica Japonica, 1991; 41: 12.

[36]  Rapaport, op. cit. (Ref. 4).

[37]  Ibid.

[38]  Margolis, J. The interrelationship of coagulation of plasma and release of peptides. Annals of the New York Academy of Sciences, 1963; 104: 133.

[39]  23-25. Ibid.

[40]  Morrison, D.C. et al., op. cit.

[41]  Rapaport, op. cit. (Ref. 4).

[42]  Alberts, B. et al, eds. Molecular Biology of the Cell. New York: Garland Publishing, Inc., 1989 (2nd ed.), p. 818.

[43]  Rapaport, op. cit. (Ref. 4).

[44] Bertz, A., et al. Modulation by cytokines of leukocyte endothelial cell interactions. Implications for thrombo­sis. Biorheology, 1990; 27: 455.

[45]  Rapaport, op. cit. (Ref. 4).

[46]  Nachman, R.L. et al. Hypercoagulable states. Annab of Internal Medicine, 1993; 119: 819.

[47]  Ibid.

[48]  Tallman, M.S., et al. New insights into the pathogene­sis of coagulation dysfunction in acute promyelocytic leukemia. Leukemia and Lymphoma, 1993; IT. 27.

[49]  Silberberg, J.M., et al. Identification of tissue factor in two human pancreatic cancer cell lines. Cancer Research, 1989; 49: 5443.

[50]  Grimstad, I.A. et al. Thromboplastin release, but not content, correlates with spontaneous metastasis of can­cer cells. International Journal of Cancer, 1988; 41: 427.

[51]  Gunji, Y. et al. Role of fibrin coagulation in protection of murine tumor cells from destruction by cytotoxic cells. Cancer Research, 1988; 48: 5216.

[52]  Sugiyama, S. et al. The role of leukotoxin (9, 10- epoxy-12-octadecenoate) in the genesis of coagulation abnormalities. Life Sciences, 1988; 43: 221.

[53]  Ibid.

[54]  White, A. et al, eds. Principles of Biochemistry. McGraw-Hill Book Co., New York, 1964, p. 648.

[55]  Mueller, H.E. et al. Increase of microbial neu­raminidase activity by the hydrogen peroxide concen­tration. Experientia, 1972; 23: 397.

[56]  Young, Robert O. Fermentology and oxidology. The study of fungus-produced mycotoxic species and the activation of the immune system and release of microzymian oxidative buffering species (MOBS). Self- published: InnerLight Biological Research Foundation, Alpine, Utah, 1994.

[57]Chandler, WL. et al. Evaluation of a new dynamic vis­cometer for measuring the viscosity of whole blood and plasma. Clinical Chemistry, 1986; 32: 505.

[58]  Saleem, A. et al. Viscoelastic measurement of clot for­mation: A new test of platelet function. Annals of Clinical and Laboratory Science, 1983; 13: 115.

[59]  Spillert, C.R. et al. Altered coagulability: An aid toselective breast biopsy. Journal of the National Medical Association, 1993; 85: 273.

[60]  Bowie, E.J. et al. The clinical pathology of intravascular coagulation. Bibliotheca Haematologica, 1983; 49: 217.

[61]  Muller-Berghaus, G. et al. The role of granulocytes in the activation of intravascular coagulation and the pre­cipitation of soluble fibrin by endotoxin. Blood, 1975; 45: 631.

[62]  Bick, R.L. Disseminated intravascular coagulation. Hematology/Oncology Clinics of North America, 1993; 6: 1259.

[63]  Bredbacka, S. et al. Laboratory methods for detecting disseminated intravascular coagulation (DIC): New aspects. Acta Anaesthesiologica Scandinavica, 1993; 37: 125.

[64]  Sigma Diagnostics, St. Louis, MO 63178; tel: 314- 771-5765.

[65]  Nachman, R.L. et al. Detection of intravascular coag­ulation by a serial-dilution protamine sulfate test. Annals of Internal Medicine, 1971; 75: 895.

[66]  Breen, F.A. et al. Ethanol gelation: A rapid screening test for intravascular coagulation. Annals of Internal Medicine, 1970; 69: 1197.

[67] Hay, E.D., ed. Cell Biology of Extracellular Matrix. New York: Plenum Press, 1981, p. 653.

[68]  Carp, H. et al. In vitro suppression of serum elastase- inhibitory capacity by ROTS generated by phagocytos- ing polymorphonuclear leukocytes. Journal of Clinical Investigation, 1979; 63: 793.

[69]  Wilson, C.L. The alternatively spliced V region con­tributes to the differential incorporation of plasma and cellular fibronectins into fibrin clots. Journal of Cell Biology, 1992; 119: 923.

[70] Young, RO, Young, SR, “The pH Miracle Revised and Updated”, Hachette Publishing, 2010.

Tables

Table 1

Expression of Sialic Acid/Galactose [MAT] from Cell and Protein Degeneration (From All Serum Proteins, RBC/WBC and Other Cell Surfaces)

  1.  Carbohydrate, Proteins, and Fats From Diet, Body Cells or Reserves
  2. As cells breakdown or ferment they give birth to bacteria, yeast, fungus and mold [EMPO] and their associated metabolic acidic waste [MAT]
  3. Exotoxins, Endotoxins, and Mycotoxins [MAT]
  4. Acetyl Aldehyde, Ethyl Alcohol, Uric Acid, Alloxan, Lactic Acid are examples of MAT
  5. MAT  Ferments Other Body Cells and their Extracellular Membranes and Proteins
  6. MAT Modifies Glycoprotein
  7. Binds to liver Galactosidase
  8. Creating an Increase in Cell and Protein Fermentation and Degeneration and Increased Amounts of Exotoxins, Endotoxins and Mycotoxins [MAT]

Table1a

Table 2

Expression of Sialic Acid [MAT] From the Fermentation of Degeneration of Insulin Producing Pancreatic Beta-Cells in Type I, Type II and Type III Diabetes

  1. Pancreatic Insulin producing Beta-Cells with no or minimal Surface Sialic Acid [MAT]A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Diet
  2. Normal regulation of Insulin Production
  3. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choicesdd
  4. Leads to cellular fermentation and degeneration and the birth of EMPO
  5. This lead to increased abnormal amounts of MAT that the immune system, the alkaline buffering system and the elimination organs has to deal with
  6. Fermenting and degenerating Insulin Producing Beta Cells
  7. Giving Rise to Surface Cell Sialic Acid [MAT}
  8. Increased Amounts of Sialic Acid Activates the Immune Response [MOBS] and Sialidase [AB]
  9. Leads to Lowered or No Insulin Production
  10. Symptoms of Type I, Type II or Type III Expressed
  11. The insulin producing beta cells of the Islets of Langerhans express silica acid on their surface as a break down metabolite.  I have suggested that when insulin producing beta cells are physically disturbed by MAT they begin to disorganize and express sialic acid on the surface of the cell.  This indicates the death of the cell and insulin production will stop.

Table2a

Table 3

HIGH BLOOD PRESSURE, ATHEROSCLEROSIS, HEART ATTACKS, STROKES, and CONGESTIVE HEART FAILURE

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the immune system to chelate the MAT.
  4. Increased amounts of MAT will cause endothelial breakdown and the expression of Sialic acid.
  5. Increased Amounts of Sialic Acid and damage to the endothelial will cause a reduction in the negative surface-charge leading to the release of Glycoproteins.
  6. The release of Glycoproteins will cause the activation of Factor XII and the blood clotting cascade.
  7. This cause the creation and formation of fibrin monomers and the increase of Platelet Deposition out of the red blood cells for clotting purposes
  8. The immune system will activate and MOBS will be released as well as sodium bicarbonate, calcium, lipids and other alkaline buffers to reduce metabolic acidity.
  9. The build-up of fibrin monomers in the clotting cascade will lead to fibrin nets and clots causing an increase in blood pressure and the risk of blockages potentially causing a Stroke or Heart Attack.

Table3a

Table 4

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
FROM INTRACELLULAR DISORGANIZATION OR FERMENTATION WHICH GIVES RISE TO MAT
 AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII (VIIa) and trace amounts of Factor Xa into the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activation of the blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated these unhealthy cells to protect healthy body cells.
  11. As body and blood cells breakdown from MAT this causes an increase of MAT and EMPO leading to systemic latent tissue acidosis and a potential metastatic cancerous condition.

Table4a

 Table 5

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING
IN CELLULAR DISORGANIZATION OR FERMENTATION/OXIDATON AND THE INCREASE OF MAT AND EMPO

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices.
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This lead to increased abnormal amounts of MAT that activates the Tumor Necrosis Factor (TNF).
  4. Increased amounts of TNF activates the Tissue Factor Gene (TF)
  5. Increased Amounts of TF causes the release of Thromboplastin.
  6. The release of Thromboplastin activates the release of clotting Factors VII and Factor Xa in the blood.
  7. This activates the release of Factors IX and X to IXa and the increase of Factor Xa.
  8. The activated blood clotting cascade leads to Disseminated Intravascular coagulation and the clotting or thickening of the blood inside the blood vessels.
  9. The DIC or hyper-coagulation will mask the fermentation of healthy cells to unhealthy cells or cancerous cells.
  10. As the unhealthy cells or cancerous cells increase the body will go into preservation mode and begin forming fibrin nets to encapsulated the unhealthy cells.
  11. This leads to tumor formation of the unhealthy or cancerous cells.
  12. As the body and blood cells breakdown this causes an increase of MAT and EMPO leading to an increased risk of  systemic metastatic cancer.

Table5aTable 6

ENDOTHEIAl CELL CONVERSION FROM AN
ANTITHROMBOTIC STATE TO A PROCOAGULANT STATE
CELLULAR DISORGANIZING PATHWAY

  1. A Physical and/or Emotional Disturbance Occurs from Lifestyle and/or Dietary choices
  2. Leads to cellular fermentation and degeneration and the birth of EMPO
  3. This leads to increased abnormal amounts of MAT that damages the protective endothelial cover cells leading to a reduction of PGI2
  4. The absence of PGI2 causes the release of Interleukin-1 and/or Tumor Necrosis Factor (TNF).
  5. In addition the loss of protective endothelial cover cells leads to Tissue Factor Gene Activation and the release of Thrombin causing a pro-coagulate state leading to DIC
  6. Another pathway to DIC would be the loss of protective endothelial cover cells and the absence of PGI2 causes the suppression of Thromomodulin, Protein C leading to procogradulation and DIC.

Talble6

 Table 7

ENDOTHELIAL CELL CONVERSION
FROM AN ANTITHROMBOTIC STATE
(NORMAL PATHWAY)

Table7

Table 8

MECHANISM OF DISSEMINATED INTRAVASCULAR COAGULATION GENERATED BY MAT

Table8Table 9

ACTIVATION OF SIALIDASE AND MICROZYMIAN OXIDATIVE BUFFERING SPECIES (MOBS) BY EMPO AND MAT

Table9

Table 10

DISSEMINATED INTRAVASCULAR COAGULATION RESULTING FROM PHAGOCYTIC OXIDATIVE BURST

Table10

Table 11

MOST BLOOD TEST and DISSEMINATED INTRAVASCULAR COAGULATION WITH SOLUBILIZED EXTRACELLULAR MATRIX

Table11

Table 12

TYPICAL SOURCES OF FERMENTATION INSULT (MAT) IN BIOLOGICAL SYSTEMS INITIATING DIC

Table12

Table 13

POSITIVE CHARGE OF CANCEROUS CELLS AND TUMORS AND THE FORMATION OF FIBRIN NETS AND TREES IN RESPONSE TO MAT

Table13

Ten Acidic Signs That Your Liver is Toxic and Sick!

liver-disease-s1a-did-you-knowLiver disease is any disturbance of liver function that causes illness. The liver is responsible for many critical functions within the body and should it become dis-eased or injured, the loss of those functions can cause significant damage to the body.  Liver dis-ease is also referred to as hepatic dis-ease.

Liver dis-ease is a broad term that covers all the potential problems that cause the liver to fail to perform its designated functions. Usually, more than 75% or three-quarters of liver tissue needs to be affected before a decrease in function occurs.

The liver is the largest solid organ in the body; and is also considered a gland because among its many functions, it makes and secretes an alkaline substance called bile. The liver is located in the upper right portion of the abdomen protected by the rib cage. It has two main lobes that are made up of tiny lobules. The liver cells have two different sources of blood supply. The hepatic artery supplies oxygen rich blood that is pumped from the heart, while the portal vein supplies alkalizing minerals from the large intestine and the spleen.

Normally, veins return blood from the body to the heart, but the portal vein allows alkaline minerals from the large intestines to enter the liver for “detoxification” and filtering prior to entering the general circulation. The portal vein also efficiently delivers minerals and fats that liver cells need to produce the proteins, cholesterol, and electrons required for normal body activities.

There are several early signs of  an acidic liver to understand in order to protect the liver and its many functions from sickness and dis-ease.
Without a fully functioning liver,  your health and wellbeing will be compromised.  Fortunately your liver is capable of repairing and renewing itself every six weeks.  Understanding the following acidic liver conditions and spotting them early,  will help to prevent and/or reverse a serious life-threatening degenerative live dis-ease.

livertoxicity

Warning Sign # 1 – Skin discoloration – Jaundice

One of the early signs of excess liver acidity and the beginning of liver dis-ease is the liver’s inability to filter out all of the dietary and/or metabolic toxins from the blood.  With a build-up of toxins this may also lead to a build-up of Bilirubin which is a breakdown product of the blood.  The breakdown of the blood which increases bilirubin is caused by an acidic lifestyle, diet, congested liver and gallbladder and constipation of the elimination organs,  The body and specifically the gallbladder uses bile  to help alkalize the food ingested coming out of the stomach.  When the body cannot evacuate Bilirubin from the liver/gallbladder and blood via the bowels, it will accumulate in the bloodstream and results in the skin taking on a yellowish hue.  This yellowing can also affect the fingernails, the tips of the fingers, and especially the eyes. This acidic condition caused by an acidic lifestyle and diet is known as Jaundice.  Read, share and like more:

Continue reading Ten Acidic Signs That Your Liver is Toxic and Sick!

What Question(s) Should YOU Be Asking? – !00 Dr. Robert O. Young’s Most Important Quotes!

11313079_10152836153232014_953830162717257610_o

“The question is whether any civilization 
can wage relentless war on life without 
destroying itself, and without losing 
the right to be called civilized.” ~ Rachel Carson 

“There is only one sickness, one disease and one treatment.  The one sickness and the one disease is the over-acidification of the blood and then tissues due to an inverted way of living, eating and thinking.  There is only one treatment prevention with an alkaline lifestyle and diet I call the pH Miracle.” – Dr. Robert O. Young

“The human body is alkaline in its design when in perfect health (pH) although acidic in ALL of its functions.”– Dr. Robert O. Young

“All sickness and disease is the result of metabolic, respiratory and/or dietary acids which have not been properly eliminated through the four channels or elimination – urination, defecation, respiration and perspiration.” – Dr. Robert O. Young

“You have to pee yourself to health!” – Dr. Robert O. Young

“Parasites are like flies they do not create the garbage they migrate to the garbage.” – Dr. Robert O. Young

“Vitamin C is a metabolic acid from mold and is toxic to the body.” – Dr. Robert O. Young

“Free radicals are unpaired electrons that buffer acids to prevent cellular breakdown.” – Dr. Robert O. Young

“Free radicals are good guys NOT bad guys and are powerful antioxidants.” – Dr. Robert O. Young

“The single most important thing anyone can do to improve health and fitness is start drinking purified, functionally structured alkaline water with a pH of at least 9.5.” – Dr. Robert O. Young

“All antibiotics are toxic acids created from the fermentation of sugar by yeast or mold.” – Dr. Robert O. Young

“All enzymes are acidic waste products of metabolism.” – Dr. Robert O. Young

“There is no such thing as healthy bacteria – get over it.” – Dr. Robert O. Young

“95 percent of all sickness and disease is caused by what you eat, what you drink and what you think. 5 percent of all sickness and disease is genetic and the ‘genetic factor’ is triggered by what you eat, what you drink and what you think.  Therefore, 100 percent of all sickness and disease is caused by what you eat, what you drink and what you think!” – Dr. Robert O. Young

“Cancer is NOT a disease of the tissues but an acidic disease of the body fluids.” – Dr. Robert O. Young

“Anyone who has a cancerous condition is in a fluid state of metabolic acidosis – period.”  – Dr. Robert O. Young

“There is only one reason why people are getting cancer – they are full of undigested food and acidic waste that is backing up into the connective tissues, organs and glands.”  Dr. Robert O. Young

“Cancer is a four letter word, ACID.” – Dr. Robert O. Young

“The so-called cancerous tumor is nothing more than the encapsulation of rotten or spoiled cells.  It is the body trying to protect itself from metabolic and/or dietary acids that have not been properly eliminated via the four channels of elimination.” – Dr. Robert O. Young

“The cure for cancer will be found in its prevention NOT in its treatment.” – Dr. Robert O. Young

“If you do not take time for daily exercise you will need to make time to die.” – Dr. Robert O. Young

“The most important part of exercise is sweating.” – Dr. Robert O. Young

“Obesity is NOT a fat problem it is an acid problem.” – Dr. Robert O. Young

“Get off your fat acid and go to health.” – Dr. Robert O. Young

“Fat is a life-saver and a protection against an acidic lifestyle and diet.” – Dr. Robert O. Young

“Health is All about the biology of the body fluids – period.” – Dr. Robert O. Young

“Germs DO NOT cause disease – acidic lifestyles and diets caused disease.” – Dr. Robert O. Young

“Germs are NOT the cause of cellular breakdown but the evidence of cellular breakdown.” – Dr. Robert O. Young

“Germs are born in us and from us.” – Dr. Robert O. Young

“Germs from the outside world can only contribute to a state of imbalance but cannot cause ANY specific disease.”

“Bacteria, yeast and mold are all biological transformation of rotting or spoiling body cells.” –  Dr. Robert O. Young

“Bacteria, yeast and mold are not the cause of disease but the result of cellular breakdown due to an acidic environment.” – Dr. Robert O. Young

“Bacteria is a plemorphism or biological transformation of a plant, animal or human cell.” – Dr. Robert O. Young

“Yeast is a pleomorphism or biological transformation of bacteria in a declining pH or acidic environment.” – Dr. Robert O. Young

“Mold is the final stage of cellular pleomorphism or biological transformation.” – Dr. Robert O. Young

“The dust spoken about in the Bible by God is living indestructible matter and the anatomical element that makes up every plant, animal and human cell.” – Dr. Robert O. Young

“Nothing ever dies it only changes.” – Dr. Robert O. Young

“The only thing in life that is constant is change.” – Dr. Robert O. Young

“Disease is born in us and from us.” – Dr. Robert O. Young

“You don’t get sick YOU do sick.” – Dr. Robert O. Young

“You don’t get healthy YOU do healthy.” – Dr. Robert O. Young

‘You don’t get fit YOU do fit.” – Dr. Robert O. Young

“You don’t get OLD you MOLD!” – Dr. Robert O. Young

“Infection is a scientific illusion, Outfection is the reality.”  – Dr. Robert O. Young

“All sickness and disease are symptoms of acidity and there is no other cause.” – Dr. Robert O. Young

 

“True immunity is not found with the white blood cells or in vaccination but is found in maintaining the alkaline pH of the blood and interstitial fluids.” – Dr. Robert O. Young

“Health and fitness begins in the core.” – Dr. Robert O. Young

“Life and death begin in the blood.” – Dr. Robert O. Young

“Life begins with one drop of blood.” – Dr. Robert O. Young

“The primary site of stem cell production is the crypts of the small intestine and NOT the bones!” – Dr. Robert O. Young

“The red blood cells are made from stem cells in the crypts of the small intestines.” – Dr. Robert O. Young

“The red blood cell is the primary stem cell in which all body cells are made from.” – Dr. Robert O. Young

“All body cells are made from red blood cells.” – Dr. Robert O. Young

“The pancreas is an alkaline gland that secrets sodium bicarbonate.” – Dr. Robert O. Young

“Diabetes is caused by congestion from undigested matter in the 9 yards of the small intestines.” – Dr. Robert O. Young

“The stomach is an organ of contribution NOT an organ of digestion.” – Dr. Robert O. Young

“The main purpose of the stomach is to alkalize the food ingested NOT digest the food.” – Dr. Robert O. Young

“The only purpose of the small intestines is to manufacture stem cells and blood out of liquid alkaline food.” – Dr. Robert O. Young

“The small intestines does not digest or absorb food.  If it did you would be dead!” – Dr. Robert O. Young

“The large intestines purpose is to absorb purified alkaline water and alkaline minerals.  Everything else is eliminated.” – Dr. Robert O. Young

“You only have one instrument in your body to digest food and that is YOUR teeth so chew to a liquid state before swallowing.” – Dr. Robert O. Young

“The lymphatic system is the vacuum cleaner of the interstitial fluids.” – Dr. Robert O. Young

“Conception can only take place in an alkaline environment.” – Dr. Robert O. Young

“Enzymes are the waste product of cellular breakdown.” – Dr. Robert O. Young

“One of the major causes of diabetes is eating chicken which rots and destroys the intestinal villi setting the stage for constipation and then Type I diabetes.”  Dr. Robert O. Young

“The single most important thing you can do to improve your health is start drinking alkaline water at a pH of 9.5.” – Dr. Robert O. Young

“Ebola, HIV, Hep C are all phantom viruses.” – Dr. Robert O. Young

“Just like acidic snake venom, viruses are the acidic waste products of metabolism, respiration, diet and cellular breakdown.” – Dr. Robert O. Young

“The virus is nothing more than crystallized or solidified acid.”  Dr. Robert O. Young

“Stones are nothing more that solidified metabolic acid and a sure sign of an acidic diet and poor elimination.” – Dr. Robert O. Young

“Acid equals pain and pain equals acid.” – Dr. Robert O. Young

” As they say in the computer world, ‘Garbage IN – Garbage Out’.  The same applies to what we eat, drink and think. The only problem is many times the garbage in does not come out setting the stage for sickness and eventual disease.” – Dr. Robert O. Young

“There is only one cause of inflammation and that is acidic waste that has not been properly eliminated through the four channels of elimination.” – Dr. Robert O. Young

“Acid causes inflammation and inflammation leads to all degenerative disease, including cancer and heart disease.” – Dr. Robert O. Young

“All viruses are non-living because they are all acids.” – Dr. Robert O. Young

“All hormones are acidic waste products of glandular function.” – Dr. Robert O. Young

“The body runs on electrons NOT sugar.” – Dr. Robert O. Young

“Sugar is a metabolic waste product.” – Dr. Robert O. Young

“There are only four food groups, chlorophyll, oil, water and salt.” – Dr. Robert O. Young

“Drinking the blood or plants or chlorophyll will build healthy blood and in turn build healthy body cells.” – Dr. Robert O. Young

“The order of health begins with a base diet creating healthy bowels,  leading to healthy blood, then a healthy brain and finally a healthy body.” – Dr. Robert O. Young

“I call it the four “B’s” – base, bowels, blood, brain and finally body.  This is the true order of health, fitness and healing.” – Dr. Robert O. Young

“The primary brain or the first brain is the small intestines.  The secondary brain is in the head and is controlled by the first brain.” – Dr. Robert O. Young

“The purpose of the stomach is to purpose sodium bicarbonate to alkalize the food NOT digest the food.” – Dr. Robert O. Young

“Hydrochloric acid is a waste product of sodium bicarbonate production and never touches the food ingested.” – Dr. Robert O. Young

“pH stands for ‘perfect health’. – Dr. Robert O. Young

“A pH miracle is a natural phenomenon between the cause and effect relationship.” – Dr. Robert O. Young

“The single most important measurement that should be tested daily is the pH of the interstitial fluids.” – Dr. Robert O. Young

“The pH of the urine is a measurement of the interstitial fluids.” – Dr. Robert O. Young

“The pH of the saliva is a measurement of body’s antioxidant levels.” – Dr. Robert O. Young

“White blood cells are the garbage collectors of the body and NOT soldiers of war.” – Dr. Robert O. Young

“Life begins at conception when  one drop of blood is formed.” – Dr. Robert O. Young

“The leading cause of death in the World today is ignorance.” – Dr. Robert O. Young

“When the fish is sick what would you  do treat the fish or change the water?” – Dr. Robert O. Young

“The human or animal cell is only as healthy as the water it swims in!” – Dr. Robert O. Young

“The germ is nothing the terrain is everything.” – Dr. Robert O. Young

“Matter cannot be created nor can it be destroyed it can only change its form and/or function.” – Dr. Robert O. Young

“The quality and quantity of life is determined by personal choice.” – Dr. Robert O. Young

“Health and fitness or sickness and disease are the consequences of personal choice.” – Dr. Robert O. Young

“Education NOT Medication – Education NOT Vaccination – Education NOT Radiation – Education NOT Operation – Health Care NOT Sick Care – YoungaCare NOT ObamaCare!  It is your body, your life and your choice!” – Dr. Robert O. Young

“Fools may mock me but they will Never disprove my science I call The New Biology.” – Dr. Robert O. Young

“Dr. Robert O. Young is on the threshold of a New Biology that will change the biology and medical worlds as we known them today.”  Niel Solomon, MD, Former head of research at Johns Hopkins University, School of Medicine.

Dr. Robert O. Young

Support & Share Dr. Robert O. Young at: http://www.phoreveryoung.com and http://www.phoreveryoung.wordpress.com and www.linkedin.com/in/drrobertoyoung, https://www.facebook.com/groups/50864627953/, https://business.facebook.com/Dr.Robert.O.Young?business_id=10152751050143317, https://business.facebook.com/ThepHMiracle?business_id=10152751050143317, https://business.facebook.com/ThepHMiracle?business_id=10152751050143317, https://twitter.com/drrobertyoung, www.youtube.com/watch?v=phmiraclecenter, www.pinterest.com/drrobertyoung, https://plus.google.com/+RobertYoung555, http://www.myspace.com/drrobertoyoung, http://www.phmiracle.com, http://www.phmiracleliving.com

8cdc9-robert_microscope_005copy

%d bloggers like this: